let-f-x-0-arctan-xt-2-dt-find-a-explicite-form-of-f-x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 41279 by math khazana by abdo last updated on 04/Aug/18 letf(x)=∫0∞arctan(xt2)dt.findaexpliciteformoff′(x) Commented by maxmathsup by imad last updated on 05/Aug/18 wehavef′(x)=∫0∞t21+x2t4dt=12∫−∞+∞t21+x2t4dtletconsiderthecomplexfunctionφ(z)=z21+x2z4wehaveforx>0φ(z)=z2(xz22)2−i2=z2(xz2−i)(xz2+i)=z2x2(t2−ix)(z2+ix)=z2x2(t−ix)(t+ix)(t−−ix)(t+−ix)=z2x2(t−eiπ4x)(t+eiπ4x)(t−e−iπ4x)(t+e−iπ4x)sothepolesofφare+−eiπ4xand+−e−iπ4xresidustheoremgive∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ4x)+Res(φ,−e−iπ4x)}butRes(φ,eiπ4x)=ixx2(2eiπ4x)(2ix)=x4x2eiπ4=x4x2e−iπ4Res(φ,−e−iπ4x)=−ix(−2e−iπ4x)x2(−2ix)=−x4x2eiπ4⇒∫−∞+∞φ(z)dz=−2iπx4x2{eiπ4−e−iπ4}=−2iπx4x22isin(π4)=xx222andf′(x)=12∫−∞+∞φ(z)dz=24xxwithx>0ifx<weputx=−u⇒f(x)=f(−u)=∫0∞arctan(−ut2)dt=−f(u)⇒f′(x)=−f′(u)=−24uu=−2−4x−x=24x−x. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-172348Next Next post: find-f-x-0-1-arctan-xt-2-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.