Menu Close

let-f-x-0-arctan-xt-2-dt-find-a-explicite-form-of-f-x-




Question Number 41279 by math khazana by abdo last updated on 04/Aug/18
let f(x)=∫_0 ^∞    arctan(xt^2 )dt .  find  a explicite form of f^′ (x)
letf(x)=0arctan(xt2)dt.findaexpliciteformoff(x)
Commented by maxmathsup by imad last updated on 05/Aug/18
we have f^′ (x)= ∫_0 ^∞     (t^2 /(1+x^2 t^4 )) dt =(1/2) ∫_(−∞) ^(+∞)   (t^2 /(1+x^2 t^4 )) dt let consider the complex  function ϕ(z) = (z^2 /(1+x^2 z^4 ))  we have  for x>0  ϕ(z) = (z^2 /((xz^2 2)^2 −i^2 )) =(z^2 /((xz^2 −i)(xz^2  +i))) = (z^2 /(x^2 (t^2  −(i/x))(z^2  +(i/x))))  =(z^2 /(x^2 (t−((√i)/( (√x))))(t+((√i)/( (√x))))(t−((√(−i))/( (√x) )))(t+((√(−i))/( (√x))))))   = (z^2 /(x^2 ( t−(e^(i(π/4)) /( (√x))))(t +(e^((iπ)/4) /( (√x))))(t−(e^(−((iπ)/4)) /( (√x) )))(t +(e^(−((iπ)/4)) /( (√x)))))) so the poles of ϕ are  +^−  (e^((iπ)/4) /( (√x))) and  +^−   (e^(−((iπ)/4)) /( (√x)))  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,(e^((iπ)/4) /( (√x)))) +Res(ϕ,−(e^(−((iπ)/4)) /( (√x))))}  but  Res(ϕ, (e^((iπ)/4) /( (√x)))) =(i/(x x^2 (2(e^((iπ)/4) /( (√x))))(2(i/x)))) = ((√x)/(4x^2  e^((iπ)/4) )) =((√x)/(4x^2 )) e^(−((iπ)/4))   Res(ϕ,−(e^(−((iπ)/4)) /( (√x)))) =((−i)/(x(−2(e^(−((iπ)/4)) /( (√x))))x^2 (−2(i/x)))) =−((√x)/(4x^2 )) e^((iπ)/4)  ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =−2iπ((√x)/(4x^2 )){e^((iπ)/4)  −e^(−((iπ)/4)) } =−2iπ ((√x)/(4x^2 )) 2i sin((π/4))  =((√x)/x^2 ) ((√2)/2)  and f^′ (x)=(1/2) ∫_(−∞) ^(+∞)  ϕ(z)dz = ((√2)/(4x(√x)))  with x>0  if x< we put x =−u ⇒f(x) = f(−u) =∫_0 ^∞ arctan(−ut^2 )dt  =−f(u) ⇒f^′ (x)=−f^′ (u) =−((√2)/(4u(√u))) =−((√2)/(−4x(√(−x)))) =((√2)/(4x(√(−x)))) .
wehavef(x)=0t21+x2t4dt=12+t21+x2t4dtletconsiderthecomplexfunctionφ(z)=z21+x2z4wehaveforx>0φ(z)=z2(xz22)2i2=z2(xz2i)(xz2+i)=z2x2(t2ix)(z2+ix)=z2x2(tix)(t+ix)(tix)(t+ix)=z2x2(teiπ4x)(t+eiπ4x)(teiπ4x)(t+eiπ4x)sothepolesofφare+eiπ4xand+eiπ4xresidustheoremgive+φ(z)dz=2iπ{Res(φ,eiπ4x)+Res(φ,eiπ4x)}butRes(φ,eiπ4x)=ixx2(2eiπ4x)(2ix)=x4x2eiπ4=x4x2eiπ4Res(φ,eiπ4x)=ix(2eiπ4x)x2(2ix)=x4x2eiπ4+φ(z)dz=2iπx4x2{eiπ4eiπ4}=2iπx4x22isin(π4)=xx222andf(x)=12+φ(z)dz=24xxwithx>0ifx<weputx=uf(x)=f(u)=0arctan(ut2)dt=f(u)f(x)=f(u)=24uu=24xx=24xx.

Leave a Reply

Your email address will not be published. Required fields are marked *