Menu Close

let-f-x-0-cos-pixt-t-2-3x-2-2-dt-with-x-gt-0-1-find-a-explicit-form-for-f-x-2-find-the-value-of-0-cos-pit-t-2-3-2-dt-3-let-U-n-f-n-find-nature-of-U-n-




Question Number 57900 by maxmathsup by imad last updated on 13/Apr/19
let f(x) =∫_0 ^∞    ((cos(πxt))/((t^2  +3x^2 )^2 )) dt with x>0  1) find a explicit form for f(x)  2) find the value of ∫_0 ^∞    ((cos(πt))/((t^2  +3)^2 ))dt  3) let U_n =f(n)  find nature of Σ U_n
letf(x)=0cos(πxt)(t2+3x2)2dtwithx>01)findaexplicitformforf(x)2)findthevalueof0cos(πt)(t2+3)2dt3)letUn=f(n)findnatureofΣUn
Commented by maxmathsup by imad last updated on 17/Apr/19
1) we have 2f(x) =∫_(−∞) ^(+∞)    ((cos(πxt))/((t^2  +3x^2 )^2 ))dt =Re(∫_(−∞) ^(+∞)  (e^(iπxt) /((t^2  +3x^2 )^2 ))dt) let  ϕ(z) =(e^(iπxz) /((z^2  +3x^2 )^2 ))   ⇒  ϕ(z) =(e^(iπxz) /((z−ix(√3))^2 (z+ix(√3))^2 ))  so the poles of ϕ  are +^− ix(√3)       (doubles)  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,ix(√3))  Res(ϕ,ix(√3)) =lim_(z→ix(√3))     (1/((2−1)!)) {(z−ix(√3))^2 ϕ(z)}^((1))   =lim_(z→ix(√x))     {  (e^(iπxz) /((z+ix(√3))^2 ))}^((1))   =lim_(z→ix(√3))      ((iπxe^(iπxz) (z+ix(√3))^2  −2(z+ix(√3))e^(iπxz) )/((z+ix(√3))^4 ))  =lim_(z→ix(√3))       (({iπx(z+ix(√3))−2}e^(iπxz) )/((z+ix(√3))^3 ))  (({iπx(2ix(√3))−2)e^(iπx(ix(√3))) )/((2ix(√3))^3 )) =(({−2π(√3)x^2 −2) e^(−π(√3)x^2 ) )/(−8i (3(√3)))) =(((π(√3)x^2 +1)e^(−π(√3)x^2 ) )/(12i(√3))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ  (((π(√3)x^2  +1)e^(−π(√3)x^2 ) )/(12i(√3))) =(π/(6(√3))) (π(√3)x^2  +1)e^(−π(√3)x^2  )  ⇒  f(x) =(π/(12(√3)))(π(√3)x^2  +1)e^(−π(√3)x^2 )   .  2)  ∫_0 ^∞     ((cos(πt))/((t^2  +3)^2 )) dt =f(1) =(π/(12(√3)))(π(√3) +1)e^(−π(√3))
1)wehave2f(x)=+cos(πxt)(t2+3x2)2dt=Re(+eiπxt(t2+3x2)2dt)letφ(z)=eiπxz(z2+3x2)2φ(z)=eiπxz(zix3)2(z+ix3)2sothepolesofφare+ix3(doubles)residustheoremgive+φ(z)dz=2iπRes(φ,ix3)Res(φ,ix3)=limzix31(21)!{(zix3)2φ(z)}(1)=limzixx{eiπxz(z+ix3)2}(1)=limzix3iπxeiπxz(z+ix3)22(z+ix3)eiπxz(z+ix3)4=limzix3{iπx(z+ix3)2}eiπxz(z+ix3)3{iπx(2ix3)2)eiπx(ix3)(2ix3)3={2π3x22)eπ3x28i(33)=(π3x2+1)eπ3x212i3+φ(z)dz=2iπ(π3x2+1)eπ3x212i3=π63(π3x2+1)eπ3x2f(x)=π123(π3x2+1)eπ3x2.2)0cos(πt)(t2+3)2dt=f(1)=π123(π3+1)eπ3

Leave a Reply

Your email address will not be published. Required fields are marked *