Menu Close

let-f-x-0-cos-xt-x-2-t-2-dt-calculate-0-1-f-x-dx-




Question Number 131049 by mathmax by abdo last updated on 31/Jan/21
let f(x)=∫_0 ^∞  ((cos(xt))/(x^2  +t^2 ))dt  calculate ∫_0 ^1 f(x)dx
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{xt}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{t}^{\mathrm{2}} }\mathrm{dt}\:\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$
Answered by mindispower last updated on 01/Feb/21
f(x)=∫_0 ^∞ ((cos(xt))/(x^2 +t^2 ))dt  t=xr⇒dt=xdr  =(1/x)∫_0 ^∞ ((cos(r))/(1+r^2 ))=(1/x).(1/2)Re∫_(−∞) ^∞ (e^(ir) /(1+r^2 ))dr  =(1/(2x))Res((e^(ir) /(1+r^2 )),r=i)=((iπ)/x),(e^(−1) /(2i))=(π/(xe))  ∫_0 ^1 f(x)dx,not exist
$${f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{cos}\left({xt}\right)}{{x}^{\mathrm{2}} +{t}^{\mathrm{2}} }{dt} \\ $$$${t}={xr}\Rightarrow{dt}={xdr} \\ $$$$=\frac{\mathrm{1}}{{x}}\int_{\mathrm{0}} ^{\infty} \frac{{cos}\left({r}\right)}{\mathrm{1}+{r}^{\mathrm{2}} }=\frac{\mathrm{1}}{{x}}.\frac{\mathrm{1}}{\mathrm{2}}{Re}\int_{−\infty} ^{\infty} \frac{{e}^{{ir}} }{\mathrm{1}+{r}^{\mathrm{2}} }{dr} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{x}}{Res}\left(\frac{{e}^{{ir}} }{\mathrm{1}+{r}^{\mathrm{2}} },{r}={i}\right)=\frac{{i}\pi}{{x}},\frac{{e}^{−\mathrm{1}} }{\mathrm{2}{i}}=\frac{\pi}{{xe}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx},{not}\:{exist} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *