Menu Close

let-f-x-0-cos-xt-xt-2-i-2-dx-with-x-from-R-and-x-0-1-find-a-explicit-form-of-f-x-2-extract-A-Re-f-x-and-B-Im-f-x-and-find-its-values-3-calculate-0-cos-2




Question Number 55760 by maxmathsup by imad last updated on 03/Mar/19
let f(x) =∫_0 ^∞     ((cos(xt))/((xt^2 +i)^2 ))dx   with x from R  and x≠0  1) find a explicit form of f(x)  2) extract  A =Re(f(x)) and  B =Im(f(x)) and find its values .  3) calculate ∫_0 ^∞    ((cos(2t))/((2t^2  +i)^2 ))dt  4) let U_n =∫_0 ^∞   ((cos(nt))/((nt^2  +i)^2 ))dt   .calculate lim_(n→+∞)  u_n   and study the convergence of Σu_n
letf(x)=0cos(xt)(xt2+i)2dxwithxfromRandx01)findaexplicitformoff(x)2)extractA=Re(f(x))andB=Im(f(x))andfinditsvalues.3)calculate0cos(2t)(2t2+i)2dt4)letUn=0cos(nt)(nt2+i)2dt.calculatelimn+unandstudytheconvergenceofΣun
Commented by maxmathsup by imad last updated on 04/Mar/19
i^2 =−1
i2=1
Commented by maxmathsup by imad last updated on 04/Mar/19
f(x)=∫_0 ^∞ ((cos(xt))/((xt^2 +i)^2 ))dt
f(x)=0cos(xt)(xt2+i)2dt
Commented by maxmathsup by imad last updated on 10/Mar/19
case 1   x>0  changement xt =u  give f(x)=∫_0 ^∞   ((cosu)/((x(u^2 /x^2 )+i)^2 ))(du/x)  =(1/x)∫_0 ^∞   ((cosu)/(((u^2 /x)+i)^2 )) =x∫_0 ^∞    ((cosu)/((u^2  +ix)^2 )) du=x ∫_0 ^∞  (((u^2 −ix)^2 cosu)/((u^4 +x^2 )^2 ))du  =x ∫_0 ^∞  (((u^2 −2ix u^2 −x^2 )cosu)/((u^4  +x^2 )^2 )) du  =x ∫_0 ^∞   (((u^2 −x^2 )cosu)/((u^4  +x^2 )^2 ))du −2ix^2  ∫_0 ^∞   ((u^2 cosu)/((u^4  +x^2 )^2 )) ⇒Re(f(x))=x∫_0 ^∞  (((u^2 −x^2 )cosu)/((u^4  +x^2 )^2 ))du =I  and Im(f(x)) =−2x^2  ∫_0 ^∞   ((u^2 cosu)/((u^4  +x^2 ))) du  let find  I   we have   2I =x ∫_(−∞) ^(+∞)   (((u^2 −x^2 )cosu)/((u^4  +x^2 )^2 )) du =x Re(∫_(−∞) ^(+∞)  (((u^2 −x^2 )e^(iu) )/((u^4  +x^2 )^2 )) du)  let ϕ(z) =(((z^2 −x^2 )e^(iz) )/((z^4  +x^2 )^2 ))   ⇒ϕ(z) =(((z^2 −x^2 )e^(iz) )/((z^2 −ix)^2 (z^2 +ix)^2 ))  =(((z^2 −x^2 )e^(iz) )/((z−(√x)e^(i(π/4)) )^2 (z+(√x)e^((iπ)/4) )^2 (z−(√x)e^(−((iπ)/4)) )^2 (z+(√x)e^(−((iπ)/4)) )^2 ))  so the poles of ϕ are  +^− (√x)e^((iπ)/4)    and +^− (√x)e^(−((iπ)/4))   (double poles)  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,(√x)e^((iπ)/4) ) +Res(ϕ,−(√x)e^(−((iπ)/4)) )}  Res(ϕ, (√x)e^((iπ)/4) ) =lim_(z→(√x)e^((iπ)/4) )  (1/((2−1)!))   {(z−(√x)e^((iπ)/4) )^2 ϕ(z)}^((1))   =lim_(z→(√x)e^((iπ)/4) )    {  (((z^2 −x^2 )e^(iz) )/((z +(√x)e^((iπ)/4) )^2 (z^2  +ix)^2 ))}^((1))  ....be continued...  mim
case1x>0changementxt=ugivef(x)=0cosu(xu2x2+i)2dux=1x0cosu(u2x+i)2=x0cosu(u2+ix)2du=x0(u2ix)2cosu(u4+x2)2du=x0(u22ixu2x2)cosu(u4+x2)2du=x0(u2x2)cosu(u4+x2)2du2ix20u2cosu(u4+x2)2Re(f(x))=x0(u2x2)cosu(u4+x2)2du=IandIm(f(x))=2x20u2cosu(u4+x2)duletfindIwehave2I=x+(u2x2)cosu(u4+x2)2du=xRe(+(u2x2)eiu(u4+x2)2du)letφ(z)=(z2x2)eiz(z4+x2)2φ(z)=(z2x2)eiz(z2ix)2(z2+ix)2=(z2x2)eiz(zxeiπ4)2(z+xeiπ4)2(zxeiπ4)2(z+xeiπ4)2sothepolesofφare+xeiπ4and+xeiπ4(doublepoles)residustheoremgive+φ(z)dz=2iπ{Res(φ,xeiπ4)+Res(φ,xeiπ4)}Res(φ,xeiπ4)=limzxeiπ41(21)!{(zxeiπ4)2φ(z)}(1)=limzxeiπ4{(z2x2)eiz(z+xeiπ4)2(z2+ix)2}(1).becontinuedmim

Leave a Reply

Your email address will not be published. Required fields are marked *