Menu Close

let-f-x-0-dt-t-2-2xt-1-1-find-a-explicit-form-of-f-x-2-cslvulste-0-dt-t-2-t-1-3-calculate-A-0-dt-t-2-2tan-t-1-4-calculate-g-x-0-tdt-




Question Number 44476 by abdo.msup.com last updated on 29/Sep/18
let f(x) =∫_0 ^∞     (dt/(t^2  +2xt−1))  1)find a explicit form of f(x)  2) cslvulste ∫_0 ^∞     (dt/(t^2  +t−1))  3)calculate A(θ)=∫_0 ^∞    (dt/(t^2  +2tan(θ)t −1))  4) calculate g(x)=∫_0 ^∞   ((tdt)/((t^2  +2xt−1)^2 ))  5)find the value of ∫_0 ^∞     ((tdt)/((t^2  +4t−1)^2 ))
letf(x)=0dtt2+2xt11)findaexplicitformoff(x)2)cslvulste0dtt2+t13)calculateA(θ)=0dtt2+2tan(θ)t14)calculateg(x)=0tdt(t2+2xt1)25)findthevalueof0tdt(t2+4t1)2
Commented by maxmathsup by imad last updated on 01/Oct/18
1) we have f(x) =∫_0 ^∞    (dt/(t^2  +2xt+x^2 −x^2 −1))  = ∫_0 ^∞      (dt/((t+x)^2 −(x^2  +1))) =∫_0 ^∞     (dt/((t+x+(√(1+x^2 )))(t+x−(√(1+x^2 )))))  =(1/(2(√(1+x^2 )))) ∫_0 ^∞    ((1/(t+x−(√(1+x^2 )))) −(1/(t+x +(√(1+x^2 )))))dt  =(1/(2(√(1+x^2 ))))[ln∣((t+x−(√(1+x^2 )))/(t+x+(√(1+x^2 ))))]_0 ^(+∞)   =(1/(2(√(1+x^2 ))))(−ln∣((x−(√(1+x^2 )))/(x+(√(1+x^2 ))))∣)  ⇒f(x)=(1/(2(√(1+x^2 ))))ln∣((x+(√(1+x^2 )))/(x−(√(1+x^2 ))))∣ .
1)wehavef(x)=0dtt2+2xt+x2x21=0dt(t+x)2(x2+1)=0dt(t+x+1+x2)(t+x1+x2)=121+x20(1t+x1+x21t+x+1+x2)dt=121+x2[lnt+x1+x2t+x+1+x2]0+=121+x2(lnx1+x2x+1+x2)f(x)=121+x2lnx+1+x2x1+x2.
Commented by maxmathsup by imad last updated on 01/Oct/18
2) ∫_0 ^∞      (dt/(t^2  +t −1)) =f((1/2)) = (1/(2(√(1+(1/4)))))ln∣(((1/2)+(√(1+(1/4))))/((1/2)−(√(1+(1/4)))))∣  =(1/( (√5)))ln(((1+(√5))/( (√5)−1))) .
2)0dtt2+t1=f(12)=121+14ln12+1+14121+14=15ln(1+551).
Commented by maxmathsup by imad last updated on 01/Oct/18
3) we have ∫_0 ^∞     (dt/(t^2 −2tanθ t −1)) =f(tanθ)  = (1/(2(√(1+tan^2 θ))))ln∣((tanθ +(√(1+tan^2 θ)))/(tanθ −(√(1+tan^2 θ))))∣  =((∣cosθ∣)/2)ln∣ ((tanθ +(1/(∣cosθ∣)))/(tanθ−(1/(∣cosθ∣))))∣ =((∣cosθ∣)/2)ln∣((ξ(θ)sinθ +1)/(ξ(θ)−1)) ∣ with ξ(θ)=((cosθ)/(∣cosθ∣)) =+^− 1
3)wehave0dtt22tanθt1=f(tanθ)=121+tan2θlntanθ+1+tan2θtanθ1+tan2θ=cosθ2lntanθ+1cosθtanθ1cosθ=cosθ2lnξ(θ)sinθ+1ξ(θ)1withξ(θ)=cosθcosθ=+1
Commented by maxmathsup by imad last updated on 01/Oct/18
4) we have f(x) =∫_0 ^∞     (dt/(t^2 +2x t −1)) ⇒f^′ (x) = −∫_0 ^∞  ((2t)/((t^2  +2xt −1)^2 ))dt ⇒  ∫_0 ^∞      (t/((t^2  +2xt −1)^2 ))dt =−(1/2)f^′ (x)  f(x)=(1/2)(1+x^2 )^(−(1/2)) {ln∣x+(√(1+x^2 ))∣−ln∣x−(√(1+x^2 ))∣}⇒  f^′ (x) =((−x)/2)(1+x^2 )^(−(3/2)) {ln∣x+(√(1+x^2 ∣))−ln∣x−(√(1+x^2 ))∣}  +(1/(2(√(1+x^2 )))) {   ((1+(x/( (√(1+x^2 )))))/(x+(√(1+x^2 )))) −((1−(x/( (√(1+x^2 )))))/(x−(√(1+x^2 ))))}  =−(x/(2(1+x^2 )(√(1+x^2 )))){ ln∣x+(√(1+x^2 ))−ln∣x−(√(1+x^2 ))∣}  +(1/(2(√(1+x^2 )))){  (1/( (√(1+x^2 )))) +(1/( (√(1+x^2 ))))} ⇒g(x) =(x/(2(1+x^2 )(√(1+x^2 ))))ln∣((x+(√(1+x^2 )))/(x−(√(1+x^2 ))))∣  +(1/(1+x^2 ))
4)wehavef(x)=0dtt2+2xt1f(x)=02t(t2+2xt1)2dt0t(t2+2xt1)2dt=12f(x)f(x)=12(1+x2)12{lnx+1+x2lnx1+x2}f(x)=x2(1+x2)32{lnx+1+x2lnx1+x2}+121+x2{1+x1+x2x+1+x21x1+x2x1+x2}=x2(1+x2)1+x2{lnx+1+x2lnx1+x2}+121+x2{11+x2+11+x2}g(x)=x2(1+x2)1+x2lnx+1+x2x1+x2+11+x2
Commented by maxmathsup by imad last updated on 01/Oct/18
5) ∫_0 ^∞    ((tdt)/((t^2  +4t−1)^2 )) =g(2)  = (1/(10(√5)))ln∣((2+(√5))/(2−(√5)))∣−(1/(10)) .
5)0tdt(t2+4t1)2=g(2)=1105ln2+525110.
Commented by maxmathsup by imad last updated on 01/Oct/18
g(x)=−(1/2)f^′ (x) ⇒ g(x) =(x/(4(1+x^2 )(√(1+x^2 ))))ln∣((x+(√(1+x^2 )))/(x−(√(1+x^2 ))))∣−(1/(2(1+x^2 )))
g(x)=12f(x)g(x)=x4(1+x2)1+x2lnx+1+x2x1+x212(1+x2)

Leave a Reply

Your email address will not be published. Required fields are marked *