Menu Close

let-f-x-0-dt-t-2-x-2-3-with-x-gt-0-1-find-a-explicit-form-off-x-1-calculate-0-dx-t-2-3-3-and-0-dt-t-2-4-3-2-find-the-value-of-A-0




Question Number 57899 by maxmathsup by imad last updated on 13/Apr/19
let f(x) =∫_0 ^(+∞)   (dt/((t^2  +x^2 )^3 ))  with x>0  1) find a explicit form off (x)  1) calculate ∫_0 ^∞     (dx/((t^2  +3)^3 ))  and ∫_0 ^∞     (dt/((t^2  +4)^3 ))  2) find the value of A(θ) =∫_0 ^∞     (dt/((t^2  +sin^2 θ)^3 ))  with 0<θ<π.
letf(x)=0+dt(t2+x2)3withx>01)findaexplicitformoff(x)1)calculate0dx(t2+3)3and0dt(t2+4)32)findthevalueofA(θ)=0dt(t2+sin2θ)3with0<θ<π.
Commented by maxmathsup by imad last updated on 17/Apr/19
1) we have  f(x)=(1/2) ∫_(−∞) ^(+∞)    (dt/((t^2  +x^2 )^3 ))  let consider the complex function  ϕ(z) =(1/((z^2  +x^2 )^3 ))  poles of ϕ?  we have ϕ(z) =(1/((z−ix)^3 (z+ix)^3 ))  so  the poles of are +^− ix (triples) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,ix)  Res(ϕ,ix) =lim_(z→ix)    (1/((3−1)!)){ (z−ix)^3 ϕ(z)}^((2))   =lim_(z→ix)     (1/2){  (1/((z+ix)^3 ))}^((2))   we have   {(1/((z+ix)^3 ))}^((1))  =−((3(z+ix)^2 )/((z+ix)^6 )) =−(3/((z+ix)^4 )) ⇒{(1/((z+ix)^3 ))}^((2))   =−3 ((−4(z+ix)^3 )/((z+ix)^8 )) =((12)/((z+ix)^5 )) ⇒Res(ϕ,ix) =lim_(z→ix)     (6/((z+ix)^5 ))  =(6/((2ix)^5 )) =(6/(2^5 x^5 i)) =(6/(32ix^5 )) =(3/(16ix^5 )) ⇒ ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (3/(16 x^5 i)) =((3π)/(8 x^5 )) ⇒  f(x) =((3π)/(16 x^5 ))   (  with x>0)  2) ∫_0 ^∞    (dt/((t^2  +3)^3 )) =f((√3)) = ((3π)/(16 ((√3))^5 )) =((3π)/(16 ((√3))^4 (√3))) =((3π)/(9×16 (√3)))  ∫_0 ^∞      (dt/((t^2  +4)^3 )) =f(2) =((3π)/(16 (2)^5 )) =((3π)/(16×32))
1)wehavef(x)=12+dt(t2+x2)3letconsiderthecomplexfunctionφ(z)=1(z2+x2)3polesofφ?wehaveφ(z)=1(zix)3(z+ix)3sothepolesofare+ix(triples)+φ(z)dz=2iπRes(φ,ix)Res(φ,ix)=limzix1(31)!{(zix)3φ(z)}(2)=limzix12{1(z+ix)3}(2)wehave{1(z+ix)3}(1)=3(z+ix)2(z+ix)6=3(z+ix)4{1(z+ix)3}(2)=34(z+ix)3(z+ix)8=12(z+ix)5Res(φ,ix)=limzix6(z+ix)5=6(2ix)5=625x5i=632ix5=316ix5+φ(z)dz=2iπ316x5i=3π8x5f(x)=3π16x5(withx>0)2)0dt(t2+3)3=f(3)=3π16(3)5=3π16(3)43=3π9×1630dt(t2+4)3=f(2)=3π16(2)5=3π16×32
Commented by maxmathsup by imad last updated on 17/Apr/19
3)  ∫_0 ^∞     (dt/((t^2  +sin^2 θ)^3 )) =f(sinθ) =((3π)/(16 sin^5 θ))
3)0dt(t2+sin2θ)3=f(sinθ)=3π16sin5θ

Leave a Reply

Your email address will not be published. Required fields are marked *