Menu Close

let-f-x-0-dt-x-t-t-2-3-with-x-gt-1-4-1-calculate-f-x-2-calculate-also-g-x-0-dt-x-t-t-2-4-3-find-the-values-of-0-dt-1-t-t-2-3-and-0-




Question Number 65061 by mathmax by abdo last updated on 24/Jul/19
let f(x) =∫_0 ^∞    (dt/((x−t +t^2 )^3 ))  with   x>(1/4)  1) calculate f(x)  2) calculate also  g(x) =∫_0 ^∞      (dt/((x−t+t^2 )^4 ))  3)find the values of ∫_0 ^∞    (dt/((1−t+t^2 )^3 ))  and ∫_0 ^∞   (dt/((2−t+t^2 )^4 ))
letf(x)=0dt(xt+t2)3withx>141)calculatef(x)2)calculatealsog(x)=0dt(xt+t2)43)findthevaluesof0dt(1t+t2)3and0dt(2t+t2)4
Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19
  t^2 −t+x=(t−(1/2))^2 +((4x−1)/4)=((4x−1)/4)[(((2t−1)/( (√(4x−1)))))^2 +1]  cause x>(1/4) ⇒ 4x−1>0   f(x)=((4/(4x−1)))^3 ∫_0 ^∞  (dt/([(((2t−1)/( (√(4x−1)))) )^2 +1]^3 ))    let change u=arctan(((2t−1)/( (√(4x−1)))))    then   du=(((2/( (√(4x−1)))) )/((((2t−1)/( (√(4x−1)))))^2 +1))dt    if   t=0   then  u=arctan(((−1)/( (√(4x−1)))))=((−π)/2)+arctan((√(4x−1)))=θ_0   when t=∞   u=(π/2)  Then  f(x)= ((4/(4x−1)))^3 .(2/( (√(4x−1)))) ∫_θ_0  ^(π/2)   (du/([tan^2 u +1]^2 ))       =((4/(4x−1)))^(7/2) .∫_θ_0  ^(π/2) cos^4 u du      it is easy to prove     that {_(cos^4 u −sin^4 u= cos2u  ) ^(cos^4 u +sin^4 u = 1−((sin2u)/2)) then  we got  cos^4 u = (1/2)−((sin2u)/4)+((cos2u)/2)  So    f(x)= ((4/(4x−1)))^(7/2) . [(u/2) +((cos2u)/8) +((sin2u)/4) ]_θ_0  ^(π/2)     knowing that  {_(sin2u=((2tanu)/(1+tan^2 u))) ^(cos2u=((1−tan^2 u)/(1+tan^2 u)))    we  got  f(x)=((4/(4x−1)))^(7/2) .[ (π/4)−(1/8) − ( ((arctan(√(4x−1)))/2) −(π/4) +(1/8).((1−(1/(4x−1)))/(1+(1/(4x−1)))) + (1/4). ((2.((−1)/( (√(4x−1)))))/(1+(1/(4x−1)))) )]    f(x)=((4/(4x−1)))^(7/2) .[ (π/2)−(1/4) −((arctan(√(4x−1)))/2) −((2x−1−2(√(4x−1)))/(16x)) ]       2)   (df/dx)=∫_(0    ) ^∞  ((d((1/([x−t+t^2 ]^3 ))))/dx)dt = −3 g(x)   so  g(x)=((−1)/3) (df/(dx )).  3)  by replacing  x=1   on the final expression of f(x) we got  f(1)=((4/3))^(7/2) [(π/2)−(1/4)−(π/(3×2))−((1−2(√3))/(16))]  f(2)=((4/7))^(7/2) .[(π/2)−(1/4)−((arctan(√7))/2) −((3−2(√7))/(16))]
t2t+x=(t12)2+4x14=4x14[(2t14x1)2+1]causex>144x1>0f(x)=(44x1)30dt[(2t14x1)2+1]3letchangeu=arctan(2t14x1)thendu=24x1(2t14x1)2+1dtift=0thenu=arctan(14x1)=π2+arctan(4x1)=θ0whent=u=π2Thenf(x)=(44x1)3.24x1θ0π2du[tan2u+1]2=(44x1)72.θ0π2cos4uduitiseasytoprovethat{cos4usin4u=cos2ucos4u+sin4u=1sin2u2thenwegotcos4u=12sin2u4+cos2u2Sof(x)=(44x1)72.[u2+cos2u8+sin2u4]θ0π2knowingthat{sin2u=2tanu1+tan2ucos2u=1tan2u1+tan2uwegotf(x)=(44x1)72.[π418(arctan4x12π4+18.114x11+14x1+14.2.14x11+14x1)]f(x)=(44x1)72.[π214arctan4x122x124x116x]2)dfdx=0d(1[xt+t2]3)dxdt=3g(x)sog(x)=13dfdx.3)byreplacingx=1onthefinalexpressionoff(x)wegotf(1)=(43)72[π214π3×212316]f(2)=(47)72.[π214arctan7232716]
Commented by mathmax by abdo last updated on 25/Jul/19
thank you sir .
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *