let-f-x-0-dt-x-t-t-2-3-with-x-gt-1-4-1-calculate-f-x-2-calculate-also-g-x-0-dt-x-t-t-2-4-3-find-the-values-of-0-dt-1-t-t-2-3-and-0- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 65061 by mathmax by abdo last updated on 24/Jul/19 letf(x)=∫0∞dt(x−t+t2)3withx>141)calculatef(x)2)calculatealsog(x)=∫0∞dt(x−t+t2)43)findthevaluesof∫0∞dt(1−t+t2)3and∫0∞dt(2−t+t2)4 Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19 t2−t+x=(t−12)2+4x−14=4x−14[(2t−14x−1)2+1]causex>14⇒4x−1>0f(x)=(44x−1)3∫0∞dt[(2t−14x−1)2+1]3letchangeu=arctan(2t−14x−1)thendu=24x−1(2t−14x−1)2+1dtift=0thenu=arctan(−14x−1)=−π2+arctan(4x−1)=θ0whent=∞u=π2Thenf(x)=(44x−1)3.24x−1∫θ0π2du[tan2u+1]2=(44x−1)72.∫θ0π2cos4uduitiseasytoprovethat{cos4u−sin4u=cos2ucos4u+sin4u=1−sin2u2thenwegotcos4u=12−sin2u4+cos2u2Sof(x)=(44x−1)72.[u2+cos2u8+sin2u4]θ0π2knowingthat{sin2u=2tanu1+tan2ucos2u=1−tan2u1+tan2uwegotf(x)=(44x−1)72.[π4−18−(arctan4x−12−π4+18.1−14x−11+14x−1+14.2.−14x−11+14x−1)]f(x)=(44x−1)72.[π2−14−arctan4x−12−2x−1−24x−116x]2)dfdx=∫0∞d(1[x−t+t2]3)dxdt=−3g(x)sog(x)=−13dfdx.3)byreplacingx=1onthefinalexpressionoff(x)wegotf(1)=(43)72[π2−14−π3×2−1−2316]f(2)=(47)72.[π2−14−arctan72−3−2716] Commented by mathmax by abdo last updated on 25/Jul/19 thankyousir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-dx-x-2-x-1-4-Next Next post: For-what-value-of-a-and-b-is-the-following-equation-true-lim-x-0-sin-2x-x-3-a-b-x-2-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.