Question Number 41301 by math khazana by abdo last updated on 05/Aug/18
$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{ax}} {ln}\left(\mathrm{1}+{e}^{−{bx}} \right){dx}\:{with}\:{a}>\mathrm{0}\:{and} \\ $$$${b}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\frac{\partial{f}}{\partial{a}}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\frac{\partial{f}}{\partial{b}}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{e}^{−{x}} \right){dx}\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{x}} \right){dx}\:. \\ $$
Commented by prof Abdo imad last updated on 05/Aug/18
$$\left.\mathrm{1}\right)\:{we}\:{have}\:\frac{\partial{f}}{\partial{a}}\left({x}\right)=−\int_{\mathrm{0}} ^{\infty} \:{xe}^{−{ax}} {ln}\left(\mathrm{1}+{e}^{−{bx}} \right){dx} \\ $$$${but}\:{for}\:\mid{u}\mid<\mathrm{1}\:\:{ln}\left(\mathrm{1}+{u}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {u}^{{n}} }{{n}}\:\Rightarrow \\ $$$$\frac{\partial{f}}{\partial{a}}\left({x}\right)\:=−\int_{\mathrm{0}} ^{\infty} \:\:{x}^{} \:{e}^{−{ax}} \left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:{e}^{−{nbx}} \right){dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:\:\int_{\mathrm{0}} ^{\infty} \:{xe}^{−\left({a}+{nb}\right){x}} {dx}\:{by}\:{parts} \\ $$$${A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:{x}\:{e}^{−\left({a}+{nb}\right){x}} {dx}\:=\left[\frac{−{x}}{{a}+{nb}}\:{e}^{−\left({a}+{nb}\right){x}} \right]_{\mathrm{0}} ^{+\infty} \\ $$$$−\int_{\mathrm{0}} ^{\infty} \:\:−\frac{\mathrm{1}}{{a}+{nb}}\:{e}^{−\left({a}+{nb}\right){x}} {dx} \\ $$$$=\frac{\mathrm{1}}{{a}+{nb}}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left({a}+{nb}\right){x}} {dx}\:=−\frac{\mathrm{1}}{{a}+{nb}}\left[\:\frac{\mathrm{1}}{{a}+{nb}}\right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\:\frac{\mathrm{1}}{\left({a}+{nb}\right)^{\mathrm{2}} }\:\Rightarrow\frac{\partial{f}}{\partial{a}}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}\left({a}+{nb}\right)^{\mathrm{2}} }\:… \\ $$
Commented by prof Abdo imad last updated on 05/Aug/18
$$\left.\mathrm{2}\right)\:{we}\:{have}\:\frac{\partial{f}}{\partial{b}}\left({x}\right)=−\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{ax}} \:\frac{{x}}{\mathrm{1}+{e}^{−{bx}} }{dx} \\ $$$$=−\int_{\mathrm{0}} ^{\infty} \:\:{x}\:{e}^{−{ax}} \left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{e}^{−{nbx}} \right){dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:\int_{\mathrm{0}} ^{\infty} {x}\:{e}^{−\left({a}+{nb}\right){x}} {dx}\:{but}\:{we}\:{have} \\ $$$${proved}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:\:{x}\:{e}^{−\left({a}+{nb}\right){x}} {dx}\:\:=\frac{\mathrm{1}}{\left({a}+{nb}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\frac{\partial{f}}{\partial{b}}\left({x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\left({a}+{nb}\right)^{\mathrm{2}} }\:… \\ $$
Commented by prof Abdo imad last updated on 05/Aug/18
$$\left.\mathrm{3}\right){let}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+{e}^{\left.−{x}\right)} {dx}\right. \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{2}{x}} \left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:{e}^{−{nx}} \right){dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\left({n}+\mathrm{2}\right){x}} {dx}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({n}+\mathrm{2}\right){x}} {dx}=\left[\frac{−\mathrm{1}}{{n}+\mathrm{2}}\:{e}^{−\left({n}+\mathrm{2}\right){x}} \right]_{\mathrm{0}} ^{+\infty} =\frac{\mathrm{1}}{{n}+\mathrm{2}}\:\Rightarrow \\ $$$${I}\:=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}\left({n}+\mathrm{2}\right)}\:=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{1}} ^{\infty} \left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left\{\frac{\mathrm{1}}{{n}}\:−\frac{\mathrm{1}}{{n}+\mathrm{2}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:−\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}+\mathrm{2}}\:{but} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:={ln}\left(\mathrm{2}\right) \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}+\mathrm{2}}\:=\sum_{{n}=\mathrm{3}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{3}} }{{n}} \\ $$$$=\sum_{{n}=\mathrm{3}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:={ln}\left(\mathrm{2}\right)−\left\{\mathrm{1}\:−\frac{\mathrm{1}}{\mathrm{2}}\right\}={ln}\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\:{I}\:=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}}\right\}\:\Rightarrow{I}\:=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$$$ \\ $$
Commented by prof Abdo imad last updated on 05/Aug/18
$${let}\:\:{J}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}} {ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{x}} \right){dx}\:{we}\:{have} \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} \left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:{e}^{−\mathrm{2}{nx}} \right){dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right){x}} {dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\left[\frac{−\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:{e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right){x}} \right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}\left(\mathrm{2}{n}+\mathrm{1}\right)}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{J}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \left\{\:\frac{\mathrm{1}}{\mathrm{2}{n}}−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$=\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}}\:+\frac{\pi}{\mathrm{4}}\:−\mathrm{1}\:\Rightarrow{J}\:={ln}\left(\mathrm{2}\right)+\frac{\pi}{\mathrm{2}}\:−\mathrm{2}\:. \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Aug/18
$${f}\left({a},{b}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} {ln}\left(\mathrm{1}+{e}^{−{bx}} \right){dx} \\ $$$${after}\:{intregation}\:{the}\:{results}\:{will}\:{be}\:{in}\:{terms}\:{of}\:{a}\:{and}\:{b} \\ $$$$\:{so}\:{we}\:{can}\:{write} \\ $$$$ \\ $$$${df}=\left(\frac{\partial{f}}{\partial{a}}\right)_{{b}} \:{da}\:+\left(\frac{\partial{f}}{\partial{b}}\right)_{{a}} {db} \\ $$$$\frac{{df}}{{da}}=\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{1}+{e}^{−{bx}} \right).\frac{\partial}{\partial{a}}\left({e}^{−{ax}} \right)\:{dx} \\ $$$$\frac{{df}}{{da}}=\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{1}+{e}^{−{bx}} \right).\left(−{ae}^{−{ax}} \right){dx} \\ $$$$\frac{{df}}{{da}}=−{af} \\ $$$$\frac{{df}}{{f}}=−{ada} \\ $$$${lnf}=−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}+{c}_{\mathrm{1}} \\ $$$${f}\left({a},{b}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{ln}\left(\mathrm{1}+{e}^{−{bx}} \right){e}^{−{ax}} {dx} \\ $$$$\frac{{df}}{{db}}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} .\frac{\partial}{\partial{b}}\left\{{ln}\left(\mathrm{1}+{e}^{−{bx}} \right)\:{dx}\right. \\ $$$$\frac{{df}}{{db}}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} .\frac{−{be}^{−{bx}} }{\mathrm{1}+{e}^{−{bx}} }\:{dx} \\ $$$$\frac{{df}}{{db}}=\int_{\mathrm{0}} ^{\infty} \left(−{b}\right)\frac{{e}^{−{ax}−{bx}} }{{e}^{{bx}} +\mathrm{1}}.\frac{{e}^{{bx}} }{}{dx} \\ $$$$\:\:\frac{{df}}{{db}}=\left(−{b}\right)\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{ax}} }{\mathrm{1}+{e}^{{bx}} }\:{dx} \\ $$$${let}\:{t}=\mathrm{1}+{e}^{{bx}} \:\:\:\:{dt}={e}^{{bx}} .{b}.{dx} \\ $$$$\:\:\:{dx}=\frac{{dt}}{{b}\left({t}−\mathrm{1}\right)}\:\: \\ $$$${e}^{{bx}} ={t}−\mathrm{1}\:\:\:{e}^{{x}} =\left({t}−\mathrm{1}\right)^{\frac{\mathrm{1}}{{b}}} \:\:\:\:{so}\:{e}^{−{ax}} =\left({t}−\mathrm{1}\right)^{\frac{−{a}}{{b}}} \\ $$$$\frac{{df}}{{db}}=\left(−{b}\right)\int_{\mathrm{2}} ^{\infty} \:\frac{\left({t}−\mathrm{1}\right)^{\frac{−{a}}{{b}}} }{{t}}×\frac{{dt}}{{b}\left({t}−\mathrm{1}\right)} \\ $$$$\frac{{df}}{{db}}=\left(−\mathrm{1}\right)\int_{\mathrm{2}} ^{\infty} \frac{\left({t}−\mathrm{1}\right)^{\frac{−{a}}{{b}}−\mathrm{1}} }{{t}} \\ $$$${contd}… \\ $$$$ \\ $$