Menu Close

let-f-x-0-e-ax-ln-1-e-bx-dx-with-a-gt-0-and-b-gt-0-1-calculate-f-a-x-2-calculate-f-b-x-3-find-the-value-of-0-e-2x-ln-1-e-x-dx-and-0-e-x-ln-1-e-2x-




Question Number 41301 by math khazana by abdo last updated on 05/Aug/18
let f(x)=∫_0 ^∞   e^(−ax) ln(1+e^(−bx) )dx with a>0 and  b>0  1) calculate (∂f/∂a)(x)  2) calculate (∂f/∂b)(x)  3)find the value of ∫_0 ^∞  e^(−2x) ln(1+e^(−x) )dx and  ∫_0 ^∞   e^(−x) ln(1+e^(−2x) )dx .
letf(x)=0eaxln(1+ebx)dxwitha>0andb>01)calculatefa(x)2)calculatefb(x)3)findthevalueof0e2xln(1+ex)dxand0exln(1+e2x)dx.
Commented by prof Abdo imad last updated on 05/Aug/18
1) we have (∂f/∂a)(x)=−∫_0 ^∞  xe^(−ax) ln(1+e^(−bx) )dx  but for ∣u∣<1  ln(1+u)=Σ_(n=1) ^∞  (((−1)^(n−1) u^n )/n) ⇒  (∂f/∂a)(x) =−∫_0 ^∞   x^  e^(−ax) (Σ_(n=1) ^∞  (((−1)^(n−1) )/n) e^(−nbx) )dx  =Σ_(n=1) ^∞   (((−1)^n )/n)  ∫_0 ^∞  xe^(−(a+nb)x) dx by parts  A_n =∫_0 ^∞   x e^(−(a+nb)x) dx =[((−x)/(a+nb)) e^(−(a+nb)x) ]_0 ^(+∞)   −∫_0 ^∞   −(1/(a+nb)) e^(−(a+nb)x) dx  =(1/(a+nb)) ∫_0 ^∞   e^(−(a+nb)x) dx =−(1/(a+nb))[ (1/(a+nb))]_0 ^(+∞)   = (1/((a+nb)^2 )) ⇒(∂f/∂a)(x)=Σ_(n=1) ^∞   (((−1)^n )/(n(a+nb)^2 )) ...
1)wehavefa(x)=0xeaxln(1+ebx)dxbutforu∣<1ln(1+u)=n=1(1)n1unnfa(x)=0xeax(n=1(1)n1nenbx)dx=n=1(1)nn0xe(a+nb)xdxbypartsAn=0xe(a+nb)xdx=[xa+nbe(a+nb)x]0+01a+nbe(a+nb)xdx=1a+nb0e(a+nb)xdx=1a+nb[1a+nb]0+=1(a+nb)2fa(x)=n=1(1)nn(a+nb)2
Commented by prof Abdo imad last updated on 05/Aug/18
2) we have (∂f/∂b)(x)=−∫_0 ^∞   e^(−ax)  (x/(1+e^(−bx) ))dx  =−∫_0 ^∞   x e^(−ax) (Σ_(n=0) ^∞  (−1)^n  e^(−nbx) )dx  =Σ_(n=0) ^∞   (−1)^(n+1)  ∫_0 ^∞ x e^(−(a+nb)x) dx but we have  proved that ∫_0 ^∞   x e^(−(a+nb)x) dx  =(1/((a+nb)^2 )) ⇒  (∂f/∂b)(x) =Σ_(n=0) ^∞  (((−1)^(n+1) )/((a+nb)^2 )) ...
2)wehavefb(x)=0eaxx1+ebxdx=0xeax(n=0(1)nenbx)dx=n=0(1)n+10xe(a+nb)xdxbutwehaveprovedthat0xe(a+nb)xdx=1(a+nb)2fb(x)=n=0(1)n+1(a+nb)2
Commented by prof Abdo imad last updated on 05/Aug/18
3)let I = ∫_0 ^∞   e^(−2x) ln(1+e^(−x)) dx  I = ∫_0 ^∞  e^(−2x) (Σ_(n=1) ^∞   (((−1)^(n−1) )/n) e^(−nx) )dx  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) ∫_0 ^∞    e^(−(n+2)x) dx but  ∫_0 ^∞  e^(−(n+2)x) dx=[((−1)/(n+2)) e^(−(n+2)x) ]_0 ^(+∞) =(1/(n+2)) ⇒  I = Σ_(n=1) ^∞   (((−1)^(n−1) )/(n(n+2))) =(1/2)Σ_(n=1) ^∞ (−1)^(n−1) {(1/n) −(1/(n+2))}  =(1/2) Σ_(n=1) ^∞  (((−1)^(n−1) )/n) −(1/2)Σ_(n=1) ^∞  (((−1)^(n−1) )/(n+2)) but  Σ_(n=1) ^∞   (((−1)^(n−1) )/n) =ln(2)  Σ_(n=1) ^∞   (((−1)^(n−1) )/(n+2)) =Σ_(n=3) ^∞  (((−1)^(n−3) )/n)  =Σ_(n=3) ^∞   (((−1)^(n−1) )/n) =ln(2)−{1 −(1/2)}=ln(2)−(1/2)  ⇒ I =(1/2)ln(2)−(1/2){ln(2)−(1/2)} ⇒I =(1/4)
3)letI=0e2xln(1+ex)dxI=0e2x(n=1(1)n1nenx)dx=n=1(1)n1n0e(n+2)xdxbut0e(n+2)xdx=[1n+2e(n+2)x]0+=1n+2I=n=1(1)n1n(n+2)=12n=1(1)n1{1n1n+2}=12n=1(1)n1n12n=1(1)n1n+2butn=1(1)n1n=ln(2)n=1(1)n1n+2=n=3(1)n3n=n=3(1)n1n=ln(2){112}=ln(2)12I=12ln(2)12{ln(2)12}I=14
Commented by prof Abdo imad last updated on 05/Aug/18
let  J = ∫_0 ^∞   e^(−x) ln(1+e^(−2x) )dx we have  J = ∫_0 ^∞  e^(−x) (Σ_(n=1) ^∞  (((−1)^(n−1) )/n) e^(−2nx) )dx  =Σ_(n=1) ^∞   (((−1)^(n−1) )/n) ∫_0 ^∞   e^(−(2n+1)x) dx  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)[((−1)/(2n+1)) e^(−(2n+1)x) ]_0 ^(+∞)   =Σ_(n=1) ^∞    (((−1)^(n−1) )/(n(2n+1))) ⇒  (1/2)J =Σ_(n=1) ^∞  (−1)^(n−1) { (1/(2n))−(1/(2n+1))}  =(1/2)Σ_(n=1) ^∞  (((−1)^(n−1) )/n)  +Σ_(n=1) ^∞    (((−1)^n )/(2n+1))  =((ln(2))/2) +(π/4) −1 ⇒J =ln(2)+(π/2) −2 .
letJ=0exln(1+e2x)dxwehaveJ=0ex(n=1(1)n1ne2nx)dx=n=1(1)n1n0e(2n+1)xdx=n=1(1)n1n[12n+1e(2n+1)x]0+=n=1(1)n1n(2n+1)12J=n=1(1)n1{12n12n+1}=12n=1(1)n1n+n=1(1)n2n+1=ln(2)2+π41J=ln(2)+π22.
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Aug/18
f(a,b)=∫_0 ^∞ e^(−ax) ln(1+e^(−bx) )dx  after intregation the results will be in terms of a and b   so we can write    df=((∂f/∂a))_b  da +((∂f/∂b))_a db  (df/da)=∫_0 ^∞ ln(1+e^(−bx) ).(∂/∂a)(e^(−ax) ) dx  (df/da)=∫_0 ^∞ ln(1+e^(−bx) ).(−ae^(−ax) )dx  (df/da)=−af  (df/f)=−ada  lnf=−(a^2 /2)+c_1   f(a,b) =∫_0 ^∞  ln(1+e^(−bx) )e^(−ax) dx  (df/db)=∫_0 ^∞ e^(−ax) .(∂/∂b){ln(1+e^(−bx) ) dx  (df/db)=∫_0 ^∞ e^(−ax) .((−be^(−bx) )/(1+e^(−bx) )) dx  (df/db)=∫_0 ^∞ (−b)(e^(−ax−bx) /(e^(bx) +1)).(e^(bx) /)dx    (df/db)=(−b)∫_0 ^∞ (e^(−ax) /(1+e^(bx) )) dx  let t=1+e^(bx)     dt=e^(bx) .b.dx     dx=(dt/(b(t−1)))    e^(bx) =t−1   e^x =(t−1)^(1/b)     so e^(−ax) =(t−1)^((−a)/b)   (df/db)=(−b)∫_2 ^∞  (((t−1)^((−a)/b) )/t)×(dt/(b(t−1)))  (df/db)=(−1)∫_2 ^∞ (((t−1)^(((−a)/b)−1) )/t)  contd...
f(a,b)=0eaxln(1+ebx)dxafterintregationtheresultswillbeintermsofaandbsowecanwritedf=(fa)bda+(fb)adbdfda=0ln(1+ebx).a(eax)dxdfda=0ln(1+ebx).(aeax)dxdfda=afdff=adalnf=a22+c1f(a,b)=0ln(1+ebx)eaxdxdfdb=0eax.b{ln(1+ebx)dxdfdb=0eax.bebx1+ebxdxdfdb=0(b)eaxbxebx+1.ebxdxdfdb=(b)0eax1+ebxdxlett=1+ebxdt=ebx.b.dxdx=dtb(t1)ebx=t1ex=(t1)1bsoeax=(t1)abdfdb=(b)2(t1)abt×dtb(t1)dfdb=(1)2(t1)ab1tcontd

Leave a Reply

Your email address will not be published. Required fields are marked *