Question Number 41301 by math khazana by abdo last updated on 05/Aug/18

Commented by prof Abdo imad last updated on 05/Aug/18
![1) we have (∂f/∂a)(x)=−∫_0 ^∞ xe^(−ax) ln(1+e^(−bx) )dx but for ∣u∣<1 ln(1+u)=Σ_(n=1) ^∞ (((−1)^(n−1) u^n )/n) ⇒ (∂f/∂a)(x) =−∫_0 ^∞ x^ e^(−ax) (Σ_(n=1) ^∞ (((−1)^(n−1) )/n) e^(−nbx) )dx =Σ_(n=1) ^∞ (((−1)^n )/n) ∫_0 ^∞ xe^(−(a+nb)x) dx by parts A_n =∫_0 ^∞ x e^(−(a+nb)x) dx =[((−x)/(a+nb)) e^(−(a+nb)x) ]_0 ^(+∞) −∫_0 ^∞ −(1/(a+nb)) e^(−(a+nb)x) dx =(1/(a+nb)) ∫_0 ^∞ e^(−(a+nb)x) dx =−(1/(a+nb))[ (1/(a+nb))]_0 ^(+∞) = (1/((a+nb)^2 )) ⇒(∂f/∂a)(x)=Σ_(n=1) ^∞ (((−1)^n )/(n(a+nb)^2 )) ...](https://www.tinkutara.com/question/Q41328.png)
Commented by prof Abdo imad last updated on 05/Aug/18

Commented by prof Abdo imad last updated on 05/Aug/18
![3)let I = ∫_0 ^∞ e^(−2x) ln(1+e^(−x)) dx I = ∫_0 ^∞ e^(−2x) (Σ_(n=1) ^∞ (((−1)^(n−1) )/n) e^(−nx) )dx =Σ_(n=1) ^∞ (((−1)^(n−1) )/n) ∫_0 ^∞ e^(−(n+2)x) dx but ∫_0 ^∞ e^(−(n+2)x) dx=[((−1)/(n+2)) e^(−(n+2)x) ]_0 ^(+∞) =(1/(n+2)) ⇒ I = Σ_(n=1) ^∞ (((−1)^(n−1) )/(n(n+2))) =(1/2)Σ_(n=1) ^∞ (−1)^(n−1) {(1/n) −(1/(n+2))} =(1/2) Σ_(n=1) ^∞ (((−1)^(n−1) )/n) −(1/2)Σ_(n=1) ^∞ (((−1)^(n−1) )/(n+2)) but Σ_(n=1) ^∞ (((−1)^(n−1) )/n) =ln(2) Σ_(n=1) ^∞ (((−1)^(n−1) )/(n+2)) =Σ_(n=3) ^∞ (((−1)^(n−3) )/n) =Σ_(n=3) ^∞ (((−1)^(n−1) )/n) =ln(2)−{1 −(1/2)}=ln(2)−(1/2) ⇒ I =(1/2)ln(2)−(1/2){ln(2)−(1/2)} ⇒I =(1/4)](https://www.tinkutara.com/question/Q41330.png)
Commented by prof Abdo imad last updated on 05/Aug/18
![let J = ∫_0 ^∞ e^(−x) ln(1+e^(−2x) )dx we have J = ∫_0 ^∞ e^(−x) (Σ_(n=1) ^∞ (((−1)^(n−1) )/n) e^(−2nx) )dx =Σ_(n=1) ^∞ (((−1)^(n−1) )/n) ∫_0 ^∞ e^(−(2n+1)x) dx =Σ_(n=1) ^∞ (((−1)^(n−1) )/n)[((−1)/(2n+1)) e^(−(2n+1)x) ]_0 ^(+∞) =Σ_(n=1) ^∞ (((−1)^(n−1) )/(n(2n+1))) ⇒ (1/2)J =Σ_(n=1) ^∞ (−1)^(n−1) { (1/(2n))−(1/(2n+1))} =(1/2)Σ_(n=1) ^∞ (((−1)^(n−1) )/n) +Σ_(n=1) ^∞ (((−1)^n )/(2n+1)) =((ln(2))/2) +(π/4) −1 ⇒J =ln(2)+(π/2) −2 .](https://www.tinkutara.com/question/Q41331.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Aug/18
