let-f-x-0-e-t-1-xt-dt-calculate-f-n-0- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 32739 by caravan msup abdo. last updated on 01/Apr/18 letf(x)=∫0∞e−t1+xtdtcalculatef(n)(0). Commented by abdo imad last updated on 03/Apr/18 fisC∞andf′(x)=∫0∞∂∂x(e−t1+xt)dt=∫0∞−te−t(1+xt)2dtalsowehavef(x)=∫0∞e−tt1x+1tdt⇒f(n)(x)=∫0∞e−tt(−1)nn!(x+1t)n+1dt=(−1)nn!∫0∞e−tttn+1(1+xt)n+1dt=(−1)n(n!)∫0∞tne−t(1+xt)n+1dt⇒f(n)(0)=(−1)n(n!)∫0∞tne−tdtletcalculateAn=∫0∞tne−tdt.bypartsAn=[−tne−t]0∞+∫0∞ntn−1e−tdt=nAn−1⇒∏k=1nAk=n!∏k=1nAk−1⇒An=n!A0=n!(lookalsothatAn=Γ(n+1)=n!)⇒f(n)(0)=(−1)n(n!)2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-o-x-1-find-0-x-lnt-t-2-1-dt-Next Next post: find-0-ln-x-2-t-2-1-t-2-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.