Menu Close

let-f-x-0-e-t-1-xt-dt-calculate-f-n-0-




Question Number 32739 by caravan msup abdo. last updated on 01/Apr/18
let f(x)=∫_0 ^∞    (e^(−t) /(1+xt))dt  calculate f^((n)) (0).
letf(x)=0et1+xtdtcalculatef(n)(0).
Commented by abdo imad last updated on 03/Apr/18
f is C^∞   and f^′ (x) =∫_0 ^∞   (∂/∂x)( (e^(−t) /(1+xt)))dt  = ∫_0 ^∞  ((−t e^(−t) )/((1+xt)^2 )) dt  also we have f(x) =∫_0 ^∞  (e^(−t) /t) (1/(x+(1/t)))dt ⇒  f^((n)) (x) = ∫_0 ^∞   (e^(−t) /t) (((−1)^n  n!)/((x+(1/t))^(n+1) ))dt  = (−1)^n  n!  ∫_0 ^∞     (e^(−t) /t)  (t^(n+1) /((1+xt)^(n+1) )) dt  =(−1)^n (n!) ∫_0 ^∞   ((t^n  e^(−t) )/((1+xt)^(n+1) ))dt ⇒  f^((n)) (0) = (−1)^n (n!) ∫_0 ^∞  t^n  e^(−t) dt let calculate  A_(n ) =∫_0 ^∞  t^n  e^(−t) dt .by parts  A_n   = [−t^n  e^(−t) ]_0 ^∞   +∫_0 ^∞  n t^(n−1)  e^(−t) dt =n A_(n−1)  ⇒  Π_(k=1) ^n  A_k =n! Π_(k=1) ^n  A_(k−1)  ⇒ A_n =n! A_0 =n! (look also  that A_n =Γ(n+1) =n!) ⇒f^((n)) (0) =(−1)^n (n!)^2  .
fisCandf(x)=0x(et1+xt)dt=0tet(1+xt)2dtalsowehavef(x)=0ett1x+1tdtf(n)(x)=0ett(1)nn!(x+1t)n+1dt=(1)nn!0etttn+1(1+xt)n+1dt=(1)n(n!)0tnet(1+xt)n+1dtf(n)(0)=(1)n(n!)0tnetdtletcalculateAn=0tnetdt.bypartsAn=[tnet]0+0ntn1etdt=nAn1k=1nAk=n!k=1nAk1An=n!A0=n!(lookalsothatAn=Γ(n+1)=n!)f(n)(0)=(1)n(n!)2.

Leave a Reply

Your email address will not be published. Required fields are marked *