Menu Close

let-F-x-0-e-x-2-t-t-1-t-2-dt-calculate-lim-x-F-x-




Question Number 36189 by prof Abdo imad last updated on 30/May/18
let F(x)=∫_0 ^∞     ((e^(−x^2 t) (√t))/(1+t^2 ))dt  calculate lim_(x→+∞)  F(x) .
letF(x)=0ex2tt1+t2dtcalculatelimx+F(x).
Commented by math khazana by abdo last updated on 18/Aug/18
changement (√t)=u give  F(x) = ∫_0 ^∞    ((e^(−x^2 u^2 )   u)/(1+u^4 )) (2u)du  = 2 ∫_0 ^∞      ((u^2   e^(−x^2 u^2 ) )/(1+u^4 )) du  =_(xu = α)   2 ∫_0 ^∞    (α^2 /x^2 )  (e^(−α^2 ) /(1+(α^4 /x^4 )))  (1/x) dα  =2 ∫_0 ^∞       ((α^2  e^(−α^2 ) )/(x^3  +(α^4 /x)))dα =2x ∫_0 ^∞    ((α^2  e^(−α^2 ) )/(x^4  +α^4 )) dα  ⇒ F(x) ≤(2/x^3 ) ∫_0 ^∞   α^2  e^(−α^2 ) dα  but ∫_0 ^∞   α^2  e^(−α^2 ) dα   converges ⇒ lim_(x→+∞) F(x)=0 .
changementt=ugiveF(x)=0ex2u2u1+u4(2u)du=20u2ex2u21+u4du=xu=α20α2x2eα21+α4x41xdα=20α2eα2x3+α4xdα=2x0α2eα2x4+α4dαF(x)2x30α2eα2dαbut0α2eα2dαconvergeslimx+F(x)=0.

Leave a Reply

Your email address will not be published. Required fields are marked *