Menu Close

let-f-x-0-ln-1-xt-2-2-t-2-dt-determine-a-explicit-form-of-f-x-2-calculate-0-ln-1-3x-2-2-t-2-dt-




Question Number 59278 by Mr X pcx last updated on 07/May/19
let f(x) =∫_0 ^∞   ((ln(1+xt^2 ))/(2+t^2 )) dt  determine a explicit form of f(x)  2)calculate ∫_0 ^∞   ((ln(1+3x^2 ))/(2+t^2 ))dt
letf(x)=0ln(1+xt2)2+t2dtdetermineaexplicitformoff(x)2)calculate0ln(1+3x2)2+t2dt
Commented by maxmathsup by imad last updated on 13/May/19
1) we have f^′ (x) =∫_0 ^∞   (t^2 /((2+t^2 )(1+xt^2 ))) dt  let decompose F(t) =(t^2 /((t^2  +2)(xt^2  +1)))   case 1     x>0  F(t) =((at +b)/(t^2  +2)) +((ct +d)/(xt^2  +1))  we have F(−t)=F(t) ⇒  ((−at +b)/(t^2  +2)) +((−ct +d)/(xt^2  +1)) = F(t) ⇒a=c=0 ⇒F(t) =(b/(t^2  +2)) +(d/(xt^2  +1))  lim_(t→+∞)  t^2  F(t) =(1/x) =b +(d/x) ⇒1 =bx +d ⇒d =1−bx  F(0) =0 =(b/2) +d ⇒b+2d =0 ⇒b =−2d ⇒d =1−(−2d)x =1+2dx ⇒  (1−2x)d =1 ⇒d =(1/(1−2x))    (we suppose x≠(1/2)) ⇒b =((−2)/(1−2x)) =(2/(2x−1)) ⇒  F(t) =(2/((2x−1)(t^2  +2))) −(1/((2x−1)(xt^2  +1))) ⇒f^′ (x) =∫_0 ^∞ F(t)dt  =(2/(2x−1)) ∫_0 ^∞   (dt/(t^2  +2)) −(1/(2x−1))∫_0 ^∞  (dt/(xt^2  +1))  but  ∫_0 ^∞    (dt/(t^2  +2)) =_(t =(√2)u)     ∫_0 ^∞   (((√2)du)/(2(1+u^2 ))) =(1/( (√2))) ∫_0 ^∞   (du/(1+u^2 )) =(π/(2(√2)))  ∫_0 ^∞   (dt/(xt^2  +1)) =_((√x)t =u)    ∫_0 ^∞      (du/( (√x)(1+u^2 ))) =(π/(2(√x))) ⇒  f^′ (x) = (2/(2x−1)) (π/(2(√2))) −(1/(2x−1)) (π/(2(√x))) ⇒f(x) =(π/( (√2))) ∫  (dx/(2x−1)) −(π/2) ∫  (dx/( (√x)(2x−1))) +c  =(π/(2(√2)))ln∣2x−1∣ −(π/2) ∫    (dx/( (√x)(2x−1))) +c   ∫   (dx/( (√x)(2x−1))) =_((√x)=u)     ∫  ((2udu)/(u(2u^2 −1))) =2 ∫    (du/(2u^2 −1))  =2 ∫  (du/(((√2)u−1)((√2)u +1))) = ∫ ((1/( (√2)u−1)) −(1/( (√2)u +1)))du  =(1/( (√2)))ln∣(((√2)u−1)/( (√2)u +1))∣ =(1/( (√2)))ln∣(((√(2x))−1)/( (√(2x)) +1))∣ ⇒  f(x) =(π/(2(√2)))ln∣2x−1∣ −(π/(2(√2)))ln∣(((√(2x))−1)/( (√(2x)) +1))∣ +c  f(0) =0 =c ⇒ f(x) =(π/(2(√2))){ln∣(√(2x))−1∣ +ln∣(√(2x))+1∣−ln∣(√(2x))−1∣ +ln∣(√(2x))+1∣}  =(π/(2(√2))) (2ln∣(√(2x)) +1∣ ⇒ f(x) =(π/( (√2)))ln∣(√(2x))+1∣   with x >0   rest to stydy the case x<0
1)wehavef(x)=0t2(2+t2)(1+xt2)dtletdecomposeF(t)=t2(t2+2)(xt2+1)case1x>0F(t)=at+bt2+2+ct+dxt2+1wehaveF(t)=F(t)at+bt2+2+ct+dxt2+1=F(t)a=c=0F(t)=bt2+2+dxt2+1limt+t2F(t)=1x=b+dx1=bx+dd=1bxF(0)=0=b2+db+2d=0b=2dd=1(2d)x=1+2dx(12x)d=1d=112x(wesupposex12)b=212x=22x1F(t)=2(2x1)(t2+2)1(2x1)(xt2+1)f(x)=0F(t)dt=22x10dtt2+212x10dtxt2+1but0dtt2+2=t=2u02du2(1+u2)=120du1+u2=π220dtxt2+1=xt=u0dux(1+u2)=π2xf(x)=22x1π2212x1π2xf(x)=π2dx2x1π2dxx(2x1)+c=π22ln2x1π2dxx(2x1)+cdxx(2x1)=x=u2uduu(2u21)=2du2u21=2du(2u1)(2u+1)=(12u112u+1)du=12ln2u12u+1=12ln2x12x+1f(x)=π22ln2x1π22ln2x12x+1+cf(0)=0=cf(x)=π22{ln2x1+ln2x+1ln2x1+ln2x+1}=π22(2ln2x+1f(x)=π2ln2x+1withx>0resttostydythecasex<0
Commented by maxmathsup by imad last updated on 13/May/19
duo to x>0  we have f(x) =(π/( (√2)))ln((√(2x)) +1)
duotox>0wehavef(x)=π2ln(2x+1)
Commented by maxmathsup by imad last updated on 13/May/19
2) ∫_0 ^∞   ((ln(1+3t^2 ))/(2+t^2 )) dt =f(3) =(π/( (√2)))ln(1+(√6)) .
2)0ln(1+3t2)2+t2dt=f(3)=π2ln(1+6).

Leave a Reply

Your email address will not be published. Required fields are marked *