let-f-x-0-ln-1-xt-2-2-t-2-dt-determine-a-explicit-form-of-f-x-2-calculate-0-ln-1-3x-2-2-t-2-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 59278 by Mr X pcx last updated on 07/May/19 letf(x)=∫0∞ln(1+xt2)2+t2dtdetermineaexplicitformoff(x)2)calculate∫0∞ln(1+3x2)2+t2dt Commented by maxmathsup by imad last updated on 13/May/19 1)wehavef′(x)=∫0∞t2(2+t2)(1+xt2)dtletdecomposeF(t)=t2(t2+2)(xt2+1)case1x>0F(t)=at+bt2+2+ct+dxt2+1wehaveF(−t)=F(t)⇒−at+bt2+2+−ct+dxt2+1=F(t)⇒a=c=0⇒F(t)=bt2+2+dxt2+1limt→+∞t2F(t)=1x=b+dx⇒1=bx+d⇒d=1−bxF(0)=0=b2+d⇒b+2d=0⇒b=−2d⇒d=1−(−2d)x=1+2dx⇒(1−2x)d=1⇒d=11−2x(wesupposex≠12)⇒b=−21−2x=22x−1⇒F(t)=2(2x−1)(t2+2)−1(2x−1)(xt2+1)⇒f′(x)=∫0∞F(t)dt=22x−1∫0∞dtt2+2−12x−1∫0∞dtxt2+1but∫0∞dtt2+2=t=2u∫0∞2du2(1+u2)=12∫0∞du1+u2=π22∫0∞dtxt2+1=xt=u∫0∞dux(1+u2)=π2x⇒f′(x)=22x−1π22−12x−1π2x⇒f(x)=π2∫dx2x−1−π2∫dxx(2x−1)+c=π22ln∣2x−1∣−π2∫dxx(2x−1)+c∫dxx(2x−1)=x=u∫2uduu(2u2−1)=2∫du2u2−1=2∫du(2u−1)(2u+1)=∫(12u−1−12u+1)du=12ln∣2u−12u+1∣=12ln∣2x−12x+1∣⇒f(x)=π22ln∣2x−1∣−π22ln∣2x−12x+1∣+cf(0)=0=c⇒f(x)=π22{ln∣2x−1∣+ln∣2x+1∣−ln∣2x−1∣+ln∣2x+1∣}=π22(2ln∣2x+1∣⇒f(x)=π2ln∣2x+1∣withx>0resttostydythecasex<0 Commented by maxmathsup by imad last updated on 13/May/19 duotox>0wehavef(x)=π2ln(2x+1) Commented by maxmathsup by imad last updated on 13/May/19 2)∫0∞ln(1+3t2)2+t2dt=f(3)=π2ln(1+6). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-value-of-n-2-n-n-1-3-n-1-3-Next Next post: find-0-pi-2-x-sinx-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.