let-F-x-0-pi-2-arctan-xtant-tant-dt-find-a-simple-form-of-f-x-2-find-the-value-of-0-pi-2-arctan-2tant-tant-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 33884 by math khazana by abdo last updated on 26/Apr/18 letF(x)=∫0π2arctan(xtant)tantdtfindasimpleformoff(x).2)findthevalueof∫0π2arctan(2tant)tantdt. Commented by abdo imad last updated on 28/Apr/18 wehavedFdx(x)=∫0π2tant(1+x2tan2t)tantdt=∫0π2dt1+x2tan2tbutchangementtant=ugivedFdx=∫0∞1(1+x2u2)du1+u2letdecomposeF(u)=1(1+x2u2)(1+u2)=au+b1+x2u2+cu+d1+u2F(−u)=F(u)⇔−au+b1+x2u2+−cu+d1+u2=au+b1+x2u2+cu+d1+u2⇒a=0andc=0⇒F(u)=b1+x2u2+d1+u2limx→+∞u2F(u)=0=bx2+d⇒b+dx2=0⇒b=−dx2F(u)=−dx21+x2u2+d1+u2wehaveF(0)=1=−dx2+d=(1−x2)d⇒d=11−x2ifx2≠1⇒F(u)=−x2(1−x2)(1+x2u2)+1(1−x2)(1+u2)dFdx(x)=−x21−x2∫0∞du1+x2u2+11−x2∫0∞du1+u2=xu=t−x21−x2∫0∞11+t2dtx+11−x2π2=−x1−x2π2+π211−x2=π2(1−x2)(1−x)=π2(1+x)⇒F(x)=π2∫0xln(1+t)dt+λbutλ=F(0)=0⇒F(x)=π2∫0xln(1+t)dt=1+t=uπ2∫11+xln(u)du=π2[uln(u)−u]11+x=π2((1+x)ln(1+x)−1−x+1)=π2((x+1)ln(x+1)−x)2)∫0π2arctan(2tant)tantdt=F(2)=π2(3ln(3)−2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: comment-creer-un-tableau-de-variation-a-partir-de-l-application-Next Next post: developp-at-integr-serie-f-x-0-x-sin-t-2-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.