Menu Close

let-F-x-0-pi-2-arctan-xtant-tant-dt-find-a-simple-form-of-f-x-2-find-the-value-of-0-pi-2-arctan-2tant-tant-dt-




Question Number 33884 by math khazana by abdo last updated on 26/Apr/18
let F(x)= ∫_0 ^(π/2)  ((arctan(xtant))/(tant)) dt find a simple  form of f(x) .  2) find the value of ∫_0 ^(π/2)   ((arctan(2tant))/(tant))dt .
letF(x)=0π2arctan(xtant)tantdtfindasimpleformoff(x).2)findthevalueof0π2arctan(2tant)tantdt.
Commented by abdo imad last updated on 28/Apr/18
we have (dF/dx)(x)= ∫_0 ^(π/2)      ((tant)/((1+x^2 tan^2 t)tant))dt  = ∫_0 ^(π/2)     (dt/(1+x^2 tan^2 t))    but changement tant =u give  (dF/dx) =∫_0 ^∞      (1/((1+x^2 u^2 ))) (du/(1+u^2 ))  let decompose  F(u) = (1/((1+x^2 u^2 )(1+u^2 ))) = ((au+b)/(1+x^2 u^2 )) +((cu+d)/(1+u^2 ))  F(−u)=F(u) ⇔((−au +b)/(1+x^2 u^2 )) +((−cu +d)/(1+u^2 )) =((au +b)/(1+x^2 u^2 )) +((cu +d)/(1+u^2 )) ⇒  a=0 and c=0 ⇒F(u)= (b/(1+x^2 u^2 )) +(d/(1+u^2 ))  lim_(x→+∞) u^2 F(u)=0=(b/x^2 ) +d ⇒b+dx^2 =0 ⇒b=−dx^2   F(u) =((−dx^2 )/(1+x^2 u^2 )) + (d/(1+u^2 )) we have F(0)=1 =−dx^2  +d  =(1−x^2 )d ⇒d=(1/(1−x^2 )) if x^2 ≠1 ⇒  F(u)=((−x^2 )/((1−x^2 )(1+x^2 u^2 ))) + (1/((1−x^2 )(1+u^2 )))  (dF/dx)(x)^ = ((−x^2 )/(1−x^2 )) ∫_0 ^∞   (du/(1+x^2 u^2 ))  + (1/(1−x^2 )) ∫_0 ^∞     (du/(1+u^2 ))  =_(xu =t)    ((−x^2 )/(1−x^2 ))  ∫_0 ^∞     (1/(1+t^2 )) (dt/x)  +(1/(1−x^2 )) (π/2)  =((−x)/(1−x^2 )) (π/2)  +(π/2) (1/(1−x^2 )) =(π/(2(1−x^2 ))) (1−x) = (π/(2(1+x)))  ⇒ F(x) = (π/2)∫_0 ^x  ln(1+t)dt  +λ  but λ=F(0)=0 ⇒  F(x)=(π/2) ∫_0 ^x ln(1+t)dt =_(1+t=u) (π/2) ∫_1 ^(1+x) ln(u)du  =(π/2)[uln(u)−u]_1 ^(1+x)  =(π/2)((1+x)ln(1+x)−1−x +1)  =(π/2)( (x+1)ln(x+1)−x)  2) ∫_0 ^(π/2)    ((arctan(2tant))/(tant)) dt = F(2) =(π/2)(3ln(3) −2)
wehavedFdx(x)=0π2tant(1+x2tan2t)tantdt=0π2dt1+x2tan2tbutchangementtant=ugivedFdx=01(1+x2u2)du1+u2letdecomposeF(u)=1(1+x2u2)(1+u2)=au+b1+x2u2+cu+d1+u2F(u)=F(u)au+b1+x2u2+cu+d1+u2=au+b1+x2u2+cu+d1+u2a=0andc=0F(u)=b1+x2u2+d1+u2limx+u2F(u)=0=bx2+db+dx2=0b=dx2F(u)=dx21+x2u2+d1+u2wehaveF(0)=1=dx2+d=(1x2)dd=11x2ifx21F(u)=x2(1x2)(1+x2u2)+1(1x2)(1+u2)dFdx(x)=x21x20du1+x2u2+11x20du1+u2=xu=tx21x2011+t2dtx+11x2π2=x1x2π2+π211x2=π2(1x2)(1x)=π2(1+x)F(x)=π20xln(1+t)dt+λbutλ=F(0)=0F(x)=π20xln(1+t)dt=1+t=uπ211+xln(u)du=π2[uln(u)u]11+x=π2((1+x)ln(1+x)1x+1)=π2((x+1)ln(x+1)x)2)0π2arctan(2tant)tantdt=F(2)=π2(3ln(3)2)

Leave a Reply

Your email address will not be published. Required fields are marked *