Menu Close

let-f-x-0-pi-2-cos-1-xsin-d-1-determine-a-explicit-form-of-f-x-2-calculate-0-pi-2-sin-2-1-xsin-2-d-3-find-the-values-of-0-pi-2-cos-1-2cos-d-




Question Number 43100 by maxmathsup by imad last updated on 07/Sep/18
let f(x) = ∫_0 ^(π/2)      ((cosθ)/(1+xsinθ))dθ  1) determine a explicit form of f(x)  2) calculate ∫_0 ^(π/2)    ((sin(2θ))/((1+xsinθ)^2 ))dθ  3) find the values of  ∫_0 ^(π/2)    ((cosθ)/(1+2cosθ))dθ   and  ∫_0 ^(π/2)      ((sin(2θ))/((1+3sinθ)^2 ))dθ .
letf(x)=0π2cosθ1+xsinθdθ1)determineaexplicitformoff(x)2)calculate0π2sin(2θ)(1+xsinθ)2dθ3)findthevaluesof0π2cosθ1+2cosθdθand0π2sin(2θ)(1+3sinθ)2dθ.
Commented by maxmathsup by imad last updated on 08/Sep/18
1) x=0 ⇒f(x)=∫_0 ^(π/2)  cosθ dθ =1  x≠0 ⇒ f(x)= (1/x) ∫_0 ^(π/2)       ((xcosθ)/(1+xsinθ))dθ =(1/x)[ln∣1+xsinθ∣]_0 ^(π/2)  =((ln∣1+x∣)/x) with  x≠−1   and we must study the case x=−1  2) we have f^′ (x) = −∫_0 ^(π/2)  ((sinθ cosθ)/((1+xsinθ)^2 ))dθ =−(1/2) ∫_0 ^(π/2)  ((sin(2θ))/((1+xsinθ)^2 ))dθ ⇒  ∫_0 ^(π/2)    ((sin(2θ))/((1+xsinθ)^2 ))dθ =−2f^′ (x) but  f^′ (x)=−(1/x^2 )ln∣1+x∣ +(1/(x(1+x))) ⇒  ∫_0 ^(π/2)    ((sin(2θ))/((1+xsinθ)^2 ))dθ =((2ln∣1+x∣)/x^2 ) −(2/(x(x+1))) .
1)x=0f(x)=0π2cosθdθ=1x0f(x)=1x0π2xcosθ1+xsinθdθ=1x[ln1+xsinθ]0π2=ln1+xxwithx1andwemuststudythecasex=12)wehavef(x)=0π2sinθcosθ(1+xsinθ)2dθ=120π2sin(2θ)(1+xsinθ)2dθ0π2sin(2θ)(1+xsinθ)2dθ=2f(x)butf(x)=1x2ln1+x+1x(1+x)0π2sin(2θ)(1+xsinθ)2dθ=2ln1+xx22x(x+1).
Commented by maxmathsup by imad last updated on 08/Sep/18
3) ∫_0 ^(π/2)    ((cosθ)/(1+2sinθ))dθ =f(2)=((ln(3))/2)  also   ∫_0 ^(π/2)   ((sin(2θ))/((1+3sinθ)^2 )) =−2f^′ (3)  =((2ln(4))/9) −(2/(12)) =((4ln(2))/9) −(1/6) .
3)0π2cosθ1+2sinθdθ=f(2)=ln(3)2also0π2sin(2θ)(1+3sinθ)2=2f(3)=2ln(4)9212=4ln(2)916.
Answered by alex041103 last updated on 08/Sep/18
let u=1+xsinθ  du/x=cosθ dθ  ⇒f(x)=(1/x)∫_1 ^(1+x) (du/u)=((ln(1+x))/x)=f(x)
letu=1+xsinθdu/x=cosθdθf(x)=1x11+xduu=ln(1+x)x=f(x)

Leave a Reply

Your email address will not be published. Required fields are marked *