let-F-x-0-pi-2-cos-xsint-dt-1-prove-that-u-R-1-u-2-2-cosu-1-u-2-2-u-4-24-2-prove-that-pi-2-1-x-2-4-F-x-pi-2-1-x-2-4-x-4-64- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 40151 by maxmathsup by imad last updated on 16/Jul/18 letF(x)=∫0π2cos(xsint)dt1)provethat∀u∈R1−u22⩽cosu⩽1−u22+u4242)provethatπ2(1−x24)⩽F(x)⩽π2(1−x24+x464) Commented by math khazana by abdo last updated on 19/Jul/18 1)wehavecos(u)=∑n=0∞(−1)nu2n(2n)!=1−u22+u4(4)!−u66!+….∀u∈R⇒1−u22⩽cosu⩽1−u22+u4242)weget1−(xsint)22⩽cos(xsint)⩽1−(xsint)22+(xsint)424⇒∫0π2(1−x22sin2t)dt⩽∫0π2cos(xsint)dt⩽∫0π2(1−x2sin2t2+x4sin424)dtbut∫0π2(1−x22sin2t)dt=π2−x22∫0π21−cos(2t)2dt=π2−x24π2=π2(1−x24)also∫0π2(1−x2sin2t2+x4sin4t24)dt=π2(1−x24)+x424∫0π2(1−cos(2t)2)2dt=π2(1−x24)+x496∫0π2(1−2cos(2t)+cos2(2t))dt=π2(1−x22)+x496π2+x496∫0π21+cos(4t)2dt=π2(1−x22)+π2(196+12.96)x4=π2(1−x22)+x464.π2=π2(1−x22+x464)⇒tberesultisproved. Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jul/18 p+iq=∫0Π2eixsintdt∫0Π21+ixsint+i2x2sin2t2!+i3x3sin3t3!+i4x4sin4t4!+..p=F(x)=∫0Π21−x2sin2t4+x4sin4t24+..dt1⩾sin2t⩾0…1⩾sin2kt⩾02k=evenso∫0Π21−x24dt⩽F(x)⩽∫0Π21−x24+x424dt(1−x24)Π2⩽F(x)⩽(1−x24+x424)Π2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-2-y-2-13-x-3-y-3-35-Next Next post: Question-171221 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.