Menu Close

let-F-x-0-pi-2-cos-xsint-dt-1-prove-that-u-R-1-u-2-2-cosu-1-u-2-2-u-4-24-2-prove-that-pi-2-1-x-2-4-F-x-pi-2-1-x-2-4-x-4-64-




Question Number 40151 by maxmathsup by imad last updated on 16/Jul/18
let F(x) = ∫_0 ^(π/2)  cos(xsint)dt  1) prove that  ∀u ∈R  1−(u^2 /2) ≤cosu≤1−(u^2 /2) +(u^4 /(24))  2) prove that (π/2)(1−(x^2 /4))≤F(x)≤ (π/2)(1−(x^2 /4) +(x^4 /(64)))
letF(x)=0π2cos(xsint)dt1)provethatuR1u22cosu1u22+u4242)provethatπ2(1x24)F(x)π2(1x24+x464)
Commented by math khazana by abdo last updated on 19/Jul/18
1) we have  cos(u)=Σ_(n=0) ^∞  (((−1)^n u^(2n) )/((2n)!))  =1−(u^2 /2)  +(u^4 /((4)!)) −(u^6 /(6!)) +.... ∀u∈R ⇒  1−(u^2 /2) ≤cosu ≤1−(u^2 /2) +(u^4 /(24))  2) we get 1−(((xsint)^2 )/2) ≤cos(xsint)≤1−(((xsint)^2 )/2)  +(((xsint)^4 )/(24)) ⇒  ∫_0 ^(π/2) (1−(x^2 /2)sin^2 t)dt ≤ ∫_0 ^(π/2)  cos(xsint)dt  ≤ ∫_0 ^(π/2)  (1−((x^2  sin^2 t)/2) +((x^4  sin^4 )/(24)))dt but  ∫_0 ^(π/2) (1−(x^2 /2)sin^2 t)dt =(π/2) −(x^2 /2) ∫_0 ^(π/2)  ((1−cos(2t))/2)dt  =(π/2) −(x^2 /4) (π/2) =(π/2)(1−(x^2 /4)) also  ∫_0 ^(π/2) (1−((x^2  sin^2 t)/2) +((x^4 sin^4 t)/(24)))dt  =(π/2)(1−(x^2 /4)) +(x^4 /(24)) ∫_0 ^(π/2) (((1−cos(2t))/2))^2  dt  =(π/2)(1−(x^2 /4)) +(x^4 /(96)) ∫_0 ^(π/2) (1−2cos(2t) +cos^2 (2t))dt  =(π/2)(1−(x^2 /2)) +(x^4 /(96)) (π/2) + (x^4 /(96)) ∫_0 ^(π/2)  ((1+cos(4t))/2)dt  =(π/2)(1−(x^2 /2))+(π/2)(  (1/(96))  +(1/(2.96)))x^4   =(π/2)(1−(x^2 /2)) +(x^4 /(64)).(π/2) =(π/2)(1−(x^2 /2) +(x^4 /(64))) ⇒  tbe result is proved.
1)wehavecos(u)=n=0(1)nu2n(2n)!=1u22+u4(4)!u66!+.uR1u22cosu1u22+u4242)weget1(xsint)22cos(xsint)1(xsint)22+(xsint)4240π2(1x22sin2t)dt0π2cos(xsint)dt0π2(1x2sin2t2+x4sin424)dtbut0π2(1x22sin2t)dt=π2x220π21cos(2t)2dt=π2x24π2=π2(1x24)also0π2(1x2sin2t2+x4sin4t24)dt=π2(1x24)+x4240π2(1cos(2t)2)2dt=π2(1x24)+x4960π2(12cos(2t)+cos2(2t))dt=π2(1x22)+x496π2+x4960π21+cos(4t)2dt=π2(1x22)+π2(196+12.96)x4=π2(1x22)+x464.π2=π2(1x22+x464)tberesultisproved.
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jul/18
p+iq=∫_0 ^(Π/2) e^(ixsint) dt  ∫_0 ^(Π/2) 1+ixsint+((i^2 x^2 sin^2 t)/(2!))+((i^3 x^3 sin^3 t)/(3!))+((i^4 x^4 sin^4 t)/(4!))+..  p=F(x)=   ∫_0 ^(Π/2) 1−((x^2 sin^2 t)/4)+((x^4 sin^4 t)/(24))+..dt   1≥sin^2 t≥0  ...  1≥sin^(2k) t≥0  2k=even  so   ∫_0 ^(Π/2) 1−(x^2 /4)dt≤F(x)≤∫_0 ^(Π/2) 1−(x^2 /4)+(x^4 /(24))dt  (1−(x^2 /4))(Π/2)≤F(x)≤(1−(x^2 /4)+(x^4 /(24)))(Π/2)
p+iq=0Π2eixsintdt0Π21+ixsint+i2x2sin2t2!+i3x3sin3t3!+i4x4sin4t4!+..p=F(x)=0Π21x2sin2t4+x4sin4t24+..dt1sin2t01sin2kt02k=evenso0Π21x24dtF(x)0Π21x24+x424dt(1x24)Π2F(x)(1x24+x424)Π2

Leave a Reply

Your email address will not be published. Required fields are marked *