Menu Close

let-f-x-0-pi-2-d-1-x-e-i-with-x-lt-1-1-developp-f-x-at-integr-serie-2-calculate-f-x-3-find-the-value-of-0-pi-2-e-i-1-x-e-i-2-4-calculate-0-pi-2




Question Number 38706 by abdo mathsup 649 cc last updated on 28/Jun/18
let f(x)= ∫_0 ^(π/2)     (dθ/(1+x e^(iθ) ))     with ∣x∣<1  1) developp f(x) at integr serie  2) calculate f(x)  3) find the value of  ∫_0 ^(π/2)    (e^(iθ) /((1+x e^(iθ) )^2 ))  4) calculate ∫_0 ^(π/2)      (dθ/(2 +e^(iθ) ))
letf(x)=0π2dθ1+xeiθwithx∣<11)developpf(x)atintegrserie2)calculatef(x)3)findthevalueof0π2eiθ(1+xeiθ)24)calculate0π2dθ2+eiθ
Commented by maxmathsup by imad last updated on 30/Jun/18
2) we have f(x) = Σ_(n=0) ^∞   (((−1)^n )/(in)) e^((inπ)/2) x^n   −Σ_(n=0) ^∞   (((−1)^n )/(in)) x^n   1) f(x) = ∫_0 ^(π/2) (Σ_(n=0) ^∞  (−1)^n  x^n  e^(inθ) )dθ = Σ_(n=0) ^∞  (−1)^n x^n  ∫_0 ^(π/2)  e^(inθ)  dθ  =(π/2)  + Σ_(n=1) ^∞  (−1)^n  x^n  [(1/(in)) e^(inθ) ]_0 ^(π/2)   =(π/2) −i Σ_(n=1) ^∞  (−1)^n x^n ( e^((inπ)/2)  −1)  f(x) =(π/2) −i Σ_(n=1) ^∞ (−1)^n ( e^((inπ)/2)  −1)x^(n )
2)wehavef(x)=n=0(1)nineinπ2xnn=0(1)ninxn1)f(x)=0π2(n=0(1)nxneinθ)dθ=n=0(1)nxn0π2einθdθ=π2+n=1(1)nxn[1ineinθ]0π2=π2in=1(1)nxn(einπ21)f(x)=π2in=1(1)n(einπ21)xn
Commented by maxmathsup by imad last updated on 30/Jun/18
2) we have f(x) =(π/2) −i Σ_(n=1) ^∞ (−1)^n  e^((inπ)/2)  x^n   +i Σ_(n=1) ^∞  (−1)^n  x^n   but  Σ_(n=1) ^∞  (−1)^n  x^n  −1= (1/(1+x)) −1 = ((−x)/(1+x))  Σ_(n=1) ^∞  (−1)^n  e^((inπ)/2)  x^n = Σ_(n=0) ^∞  (−e^((iπ)/2) x)^n  −1   = (1/(1+e^((iπ)/2) x)) −1 =  (1/(1+ix)) −1 =  ((1−ix)/(1+x^2 )) −1 = ((−x^2 )/(1+x^2 )) −i(x/(1+x^2 )) ⇒  f(x) = (π/2) −i( ((−x^2 )/(1+x^2 )) −((ix)/(1+x^2 ))) −((ix)/(1+x))  =(π/2) −(x/(1+x^2 )) +i{ (x^2 /(1+x^2 )) −(x/(1+x))}
2)wehavef(x)=π2in=1(1)neinπ2xn+in=1(1)nxnbutn=1(1)nxn1=11+x1=x1+xn=1(1)neinπ2xn=n=0(eiπ2x)n1=11+eiπ2x1=11+ix1=1ix1+x21=x21+x2ix1+x2f(x)=π2i(x21+x2ix1+x2)ix1+x=π2x1+x2+i{x21+x2x1+x}
Commented by maxmathsup by imad last updated on 30/Jun/18
3) we have f(x) =∫_0 ^(π/2)    (dθ/(1+x cosθ)) ⇒f^′ (x) = ∫_0 ^(π/2)   ((−sinθ)/((1+cosθ)^2 )) dθ ⇒  ∫_0 ^(π/2)   ((sinθ)/((1+cosθ)^2 ))dθ =−f^′ (x) .
3)wehavef(x)=0π2dθ1+xcosθf(x)=0π2sinθ(1+cosθ)2dθ0π2sinθ(1+cosθ)2dθ=f(x).
Commented by maxmathsup by imad last updated on 30/Jun/18
4) let I  =∫_0 ^(π/2)    (dθ/(2+e^(iθ) )) = (1/2) ∫_0 ^(π/2)    (dθ/(1+(1/2)e^(iθ) )) =(1/2)f((1/2))  ⇒2I =(π/2) −(1/(2(1+(1/4)))) +i{  (1/(4(1+(1/4)))) −(1/(2(1+(1/2))))}  =(π/2) (2/5) +i{(1/5) −(1/3)} = (π/5) −(2/(15)) i ⇒ I =(π/(10)) −(i/(15))
4)letI=0π2dθ2+eiθ=120π2dθ1+12eiθ=12f(12)2I=π212(1+14)+i{14(1+14)12(1+12)}=π225+i{1513}=π5215iI=π10i15

Leave a Reply

Your email address will not be published. Required fields are marked *