let-f-x-0-pi-2-dt-1-xsint-with-x-gt-1-1-calculate-f-o-f-1-and-f-2-2-give-f-at-form-of-function- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 51997 by maxmathsup by imad last updated on 01/Jan/19 letf(x)=∫0π2dt1+xsintwithx>−11)calculatef(o),f(1)andf(2)2)givefatformoffunction Commented by maxmathsup by imad last updated on 02/Jan/19 1)wehavef(0)=∫0π2dt=π2f(1)=∫0π2dt1+sint=tan(t2)=u∫0111+2u1+u22du1+u2=2∫01du1+u2+2u=2∫01du(u+1)2=[−2u+1]01=−2(12−1)=−1+2=1⇒f(1)=1f(2)=∫0π2dt1+2sint=tan(t2)=u∫0111+22u1+u22du1+u2=2∫01du1+u2+4u=2∫01duu2+4u+1.rootsofu2+4u+1Δ′=22−1=3⇒u1=−2+3andu2=−2−3f(2)=2∫01du(u−u1)(u−u2)=2u1−u2∫01(1u−u1−1u−u2)du=223∫01{1u−u1−1u−u2}du=13[ln∣u−u1u−u2∣]01=13{ln∣1−u11−u2∣−ln∣u1u2∣}=13{ln∣3−33+3∣−ln∣2−32+3∣. Commented by maxmathsup by imad last updated on 02/Jan/19 2)changementtan(t2)=ugivef(x)=∫0111+x2u1+u22du1+u2=2∫01du1+u2+2xu=2∫01duu2+2xu+1letp(u)=u2+2xu+1Δ′=x2−1case1Δ′>0⇔∣x∣>1⇒u1=−x+x2−1andu2=−x−x2−1⇒f(x)=2∫01du(u−u1)(u−u2)=2u1−u2∫01{1u−u1−1u−u2}du=221−x2[ln∣u−u1u−u2∣]01=11−x2{ln∣1−u11−u2∣−ln∣u1u2∣}=11−x2{ln∣1+x−x2−11+x+x2−1∣−ln∣x−x2−1x+x2−1∣}case2Δ′<0⇔∣x∣<1⇒p(u)=u2+2xu+x2+1−x2=(u+x)2+1−x2wedothechangementu+x=1−x2α⇒f(x)=2∫01du(u+x)2+1−x2=2∫x1−x21+x1−x21−x2dα(1−x2)(1+α2)=21−x2[arctan(α)]x1−x21+x1−x2=21−x2{arctan(1+x1−x)−arctan(x1−x2)}. Answered by Smail last updated on 02/Jan/19 letu=tan(t/2)⇒dt=2du1+u2sint=2u1+u2f(x)=2∫01du(1+u2)(1+2xu1+u2)=2∫01duu2+2xu+1=2∫01du(u+x)2+1−x2if−1<x⩽1f(x)=21−x2∫01du(u+x1−x2)2+1θ=u+x1−x2⇒dθ=du1−x2f(x)=21−x2∫x/1−x2(1+x)/1−x2dθθ2+1=21−x2[tan−1(θ)]x/1−x2(1+x)/1−x2=21−x2(tan−1(1+x1−x2)−tan−1(x1−x2)) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-defined-on-0-1-by-f-0-0-and-f-x-1-2-1-2x-1-calculate-0-1-f-x-dx-Next Next post: Question-183071 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.