Menu Close

let-f-x-0-pi-2-dt-1-xsint-with-x-gt-1-1-calculate-f-o-f-1-and-f-2-2-give-f-at-form-of-function-




Question Number 51997 by maxmathsup by imad last updated on 01/Jan/19
let f(x)=∫_0 ^(π/2)     (dt/(1+xsint))  with x>−1  1) calculate f(o) ,f(1) and f(2)  2) give f at form of function
letf(x)=0π2dt1+xsintwithx>11)calculatef(o),f(1)andf(2)2)givefatformoffunction
Commented by maxmathsup by imad last updated on 02/Jan/19
1) we have f(0)=∫_0 ^(π/2) dt =(π/2)  f(1) =∫_0 ^(π/2)   (dt/(1+sint)) =_(tan((t/2))=u)    ∫_0 ^1    (1/(1+((2u)/(1+u^2 )))) ((2du)/(1+u^2 )) =2 ∫_0 ^1    (du/(1+u^2  +2u))  =2∫_0 ^1    (du/((u+1)^2 )) =[−(2/(u+1))]_0 ^1  =−2((1/2) −1) =−1+2 =1 ⇒f(1)=1  f(2) =∫_0 ^(π/2)    (dt/(1+2sint)) =_(tan((t/2))=u)  ∫_0 ^1    (1/(1+2((2u)/(1+u^2 )))) ((2du)/(1+u^2 ))  =2 ∫_0 ^1    (du/(1+u^2  +4u)) =2 ∫_0 ^1   (du/(u^2  +4u +1))  .roots of u^2  +4u +1  Δ^′ =2^2 −1  =3 ⇒u_1 =−2+(√3)  and u_2 =−2−(√3)  f(2) =2 ∫_0 ^1  (du/((u−u_1 )(u−u_2 ))) =(2/(u_1 −u_2 )) ∫_0 ^1  ((1/(u−u_1 )) −(1/(u−u_2 )))du  =(2/(2(√3))) ∫_0 ^1 { (1/(u−u_1 )) −(1/(u−u_2 ))}du =(1/( (√3)))[ln∣((u−u_1 )/(u−u_2 ))∣]_0 ^1 =(1/( (√3))){ln∣((1−u_1 )/(1−u_2 ))∣−ln∣(u_1 /u_2 )∣}  =(1/( (√3))){ln∣((3−(√3))/(3+(√3)))∣−ln∣((2−(√3))/(2+(√3)))∣ .
1)wehavef(0)=0π2dt=π2f(1)=0π2dt1+sint=tan(t2)=u0111+2u1+u22du1+u2=201du1+u2+2u=201du(u+1)2=[2u+1]01=2(121)=1+2=1f(1)=1f(2)=0π2dt1+2sint=tan(t2)=u0111+22u1+u22du1+u2=201du1+u2+4u=201duu2+4u+1.rootsofu2+4u+1Δ=221=3u1=2+3andu2=23f(2)=201du(uu1)(uu2)=2u1u201(1uu11uu2)du=22301{1uu11uu2}du=13[lnuu1uu2]01=13{ln1u11u2lnu1u2}=13{ln333+3ln232+3.
Commented by maxmathsup by imad last updated on 02/Jan/19
2)changement tan((t/2))=u give f(x)=∫_0 ^1    (1/(1+x((2u)/(1+u^2 )))) ((2du)/(1+u^2 ))  =2∫_0 ^1   (du/(1+u^2  +2xu)) =2 ∫_0 ^1   (du/(u^2  +2xu +1)) let p(u)=u^2  +2xu +1  Δ^′ =x^2 −1  case1  Δ^′ >0 ⇔∣x∣>1  ⇒u_1 =−x+(√(x^2 −1)) and u_2 =−x−(√(x^2 −1))  ⇒f(x)=2 ∫_0 ^1    (du/((u−u_1 )(u−u_2 ))) =(2/(u_1 −u_2 ))∫_0 ^1 { (1/(u−u_1 )) −(1/(u−u_2 ))}du  =(2/(2(√(1−x^2 )))) [ln∣((u−u_1 )/(u−u_2 ))∣]_0 ^1 =(1/( (√(1−x^2 )))){ln∣((1−u_1 )/(1−u_2 ))∣−ln∣(u_1 /u_2 )∣}  =(1/( (√(1−x^2 )))){ln∣((1+x−(√(x^2 −1)))/(1+x+(√(x^2 −1))))∣−ln∣((x−(√(x^2 −1)))/(x+(√(x^2 −1))))∣}  case2  Δ^′ <0 ⇔∣x∣<1 ⇒p(u)=u^2  +2xu +x^2  +1−x^2 =(u+x)^2 +1−x^2   we do the changement u+x=(√(1−x^2 ))α ⇒  f(x) =2 ∫_0 ^1  (du/((u+x)^2  +1−x^2 )) =2 ∫_(x/( (√(1−x^2 )))) ^((1+x)/( (√(1−x^2 ))))      (((√(1−x^2 ))dα)/((1−x^2 )(1+α^2 )))  = (2/( (√(1−x^2 )))) [arctan(α)]_(x/( (√(1−x^2 )))) ^((1+x)/( (√(1−x^2 ))))   =(2/( (√(1−x^2 )))) { arctan((√((1+x)/(1−x))))−arctan((x/( (√(1−x^2 )))))} .
2)changementtan(t2)=ugivef(x)=0111+x2u1+u22du1+u2=201du1+u2+2xu=201duu2+2xu+1letp(u)=u2+2xu+1Δ=x21case1Δ>0⇔∣x∣>1u1=x+x21andu2=xx21f(x)=201du(uu1)(uu2)=2u1u201{1uu11uu2}du=221x2[lnuu1uu2]01=11x2{ln1u11u2lnu1u2}=11x2{ln1+xx211+x+x21lnxx21x+x21}case2Δ<0⇔∣x∣<1p(u)=u2+2xu+x2+1x2=(u+x)2+1x2wedothechangementu+x=1x2αf(x)=201du(u+x)2+1x2=2x1x21+x1x21x2dα(1x2)(1+α2)=21x2[arctan(α)]x1x21+x1x2=21x2{arctan(1+x1x)arctan(x1x2)}.
Answered by Smail last updated on 02/Jan/19
let u=tan(t/2)⇒dt=((2du)/(1+u^2 ))  sint=((2u)/(1+u^2 ))  f(x)=2∫_0 ^1 (du/((1+u^2 )(1+((2xu)/(1+u^2 )))))  =2∫_0 ^1 (du/(u^2 +2xu+1))=2∫_0 ^1 (du/((u+x)^2 +1−x^2 ))  if −1<x≤1  f(x)=(2/(1−x^2 ))∫_0 ^1 (du/((((u+x)/( (√(1−x^2 )))))^2 +1))  θ=((u+x)/( (√(1−x^2 ))))⇒dθ=(du/( (√(1−x^2 ))))  f(x)=(2/( (√(1−x^2 ))))∫_(x/(√(1−x^2 ))) ^((1+x)/(√(1−x^2 ))) (dθ/(θ^2 +1))  =(2/( (√(1−x^2 ))))[tan^(−1) (θ)]_(x/(√(1−x^2 ))) ^((1+x)/(√(1−x^2 )))   =(2/( (√(1−x^2 ))))(tan^(−1) (((1+x)/( (√(1−x^2 )))))−tan^(−1) ((x/( (√(1−x^2 ))))))
letu=tan(t/2)dt=2du1+u2sint=2u1+u2f(x)=201du(1+u2)(1+2xu1+u2)=201duu2+2xu+1=201du(u+x)2+1x2if1<x1f(x)=21x201du(u+x1x2)2+1θ=u+x1x2dθ=du1x2f(x)=21x2x/1x2(1+x)/1x2dθθ2+1=21x2[tan1(θ)]x/1x2(1+x)/1x2=21x2(tan1(1+x1x2)tan1(x1x2))

Leave a Reply

Your email address will not be published. Required fields are marked *