let-f-x-0-pi-2-ln-1-xcos-d-1-calculate-f-1-2-find-a-simple-form-of-f-x-3-developp-f-at-ontehr-serie- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 40621 by math khazana by abdo last updated on 25/Jul/18 letf(x)=∫0π2ln(1+xcosθ)dθ1)calculatef(1)2)findasimpleformoff(x)3)developpfatontehrserie Answered by math khazana by abdo last updated on 27/Jul/18 1)f(1)=∫0π2ln(1+cosθ)dθ=IandletJ=∫0π2ln(1−cosθ)dθwehaveI+J=∫0π2ln(1−cos2θ)dθ=∫0π2ln(sin2θ)dθ=2∫0π2ln(sinθ)dθ=2(−π2ln(2))=−πln(2)I−J=∫0π2ln(1+cosθ1−cosθ)dθ=∫0π2ln(2cos2(θ2)2sin2(θ2))dθ=∫0π2−2ln(tan(θ2))dθ=−2∫0π2ln(tan(θ2))dθ=θ2=t−4∫0π4ln(tan(t))dt∫0π4ln(tant)dt=tant=u∫01ln(u)du1+u2=∫01ln(u)1+u2du=∫01ln(u)∑n=0∞(−1)nu2n)du=∑n=0∞(−1)n∫01u2nln(u)du=∑n=0∞(−1)nAnAn=[12n+1u2n+1ln(u)]01−∫01u2n(2n+1)du=−1(2n+1)2⇒∫0π4ln(tant)dt=−∑n=0∞(−1)n(2n+1)2=−λ0(thevalueofλ0isknown)⇒I−J=4λ0⇒I+J=−πln(2)andI−J=4λ0⇒2I=−πln(2)+4λ0⇒I=−π2ln(2)+2λ0 Answered by math khazana by abdo last updated on 27/Jul/18 2)wehavef′(x)=∫0π2cosθ1+xcosθ=1x∫0π2xcosθ+1−11+xcosθdθ(x≠0)=π2x−1x∫0π2dθ1+xcosθbut∫0π2dθ1+xcosθ=tan(θ2)=t∫0111+x1−t21+t22dt1+t2=∫012dt1+t2+x(1−t2)=∫012dt1+x+(1−x)t2=21+x∫01dt1+1−x1+xt2if∣x∣<1chang.1−x1+xt=u=21+x∫01−x1+x11+u21+x1−xdu=21−x2arctan(1−x1+x)⇒f′(x)=π2x−2x1−x2arctan(1−x1+x)⇒f(x)=π2ln∣x∣−2∫1x1−x2arctan(1−x1+x)dx+cbecontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-x-1-1-x-2-1-x-2-x-1-dx-Next Next post: Given-xy-1-x-1-y-9-x-y-20-where-x-gt-y-find-the-value-of-x-y-y-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.