Menu Close

let-f-x-0-pi-2-ln-1-xcos-d-1-calculate-f-1-2-find-a-simple-form-of-f-x-3-developp-f-at-ontehr-serie-




Question Number 40621 by math khazana by abdo last updated on 25/Jul/18
let f(x)=∫_0 ^(π/2) ln(1+xcosθ)dθ   1) calculate f(1)  2) find a simple form of f(x)  3) developp f at ontehr serie
letf(x)=0π2ln(1+xcosθ)dθ1)calculatef(1)2)findasimpleformoff(x)3)developpfatontehrserie
Answered by math khazana by abdo last updated on 27/Jul/18
1) f(1)=∫_0 ^(π/2) ln(1+cosθ)dθ = I and let   J = ∫_0 ^(π/2) ln(1−cosθ)dθ we have   I +J = ∫_0 ^(π/2) ln(1−cos^2 θ)dθ = ∫_0 ^(π/2) ln(sin^2 θ)dθ  =2 ∫_0 ^(π/2)  ln(sinθ)dθ =2(−(π/2)ln(2))=−πln(2)  I −J = ∫_0 ^(π/2) ln(((1+cosθ)/(1−cosθ)))dθ  = ∫_0 ^(π/2)  ln( ((2cos^2 ((θ/2)))/(2sin^2 ((θ/2)))))dθ = ∫_0 ^(π/2)  −2 ln(tan((θ/2)))dθ  =−2  ∫_0 ^(π/2)  ln(tan((θ/2)))dθ  =_((θ/2)=t)  −4 ∫_0 ^(π/4)  ln(tan(t))dt  ∫_0 ^(π/4)  ln(tant)dt =_(tant =u)   ∫_0 ^1   ln(u) (du/(1+u^2 ))  = ∫_0 ^1    ((ln(u))/(1+u^2 )) du =∫_0 ^1 ln(u) Σ_(n=0) ^∞  (−1)^n  u^(2n) )du  =Σ_(n=0) ^∞   (−1)^n  ∫_0 ^1  u^(2n)  ln(u)du =Σ_(n=0) ^∞  (−1)^n  A_n   A_n = [(1/(2n+1)) u^(2n+1) ln(u)]_0 ^1  −∫_0 ^1   (u^(2n) /((2n+1)))du  =−(1/((2n+1)^2 )) ⇒ ∫_0 ^(π/4)  ln(tant)dt = −Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^2 ))  =−λ_0    (the value of λ_0  is known) ⇒  I −J =4 λ_0   ⇒ I +J = −π ln(2) and  I −J =4λ_0   ⇒ 2I =−πln(2)+4λ_0  ⇒  I =−(π/2)ln(2) +2λ_0
1)f(1)=0π2ln(1+cosθ)dθ=IandletJ=0π2ln(1cosθ)dθwehaveI+J=0π2ln(1cos2θ)dθ=0π2ln(sin2θ)dθ=20π2ln(sinθ)dθ=2(π2ln(2))=πln(2)IJ=0π2ln(1+cosθ1cosθ)dθ=0π2ln(2cos2(θ2)2sin2(θ2))dθ=0π22ln(tan(θ2))dθ=20π2ln(tan(θ2))dθ=θ2=t40π4ln(tan(t))dt0π4ln(tant)dt=tant=u01ln(u)du1+u2=01ln(u)1+u2du=01ln(u)n=0(1)nu2n)du=n=0(1)n01u2nln(u)du=n=0(1)nAnAn=[12n+1u2n+1ln(u)]0101u2n(2n+1)du=1(2n+1)20π4ln(tant)dt=n=0(1)n(2n+1)2=λ0(thevalueofλ0isknown)IJ=4λ0I+J=πln(2)andIJ=4λ02I=πln(2)+4λ0I=π2ln(2)+2λ0
Answered by math khazana by abdo last updated on 27/Jul/18
2) we have f^′ (x)= ∫_0 ^(π/2)  ((cosθ)/(1+x cosθ))  =(1/x) ∫_0 ^(π/2)   ((xcosθ +1 −1)/(1+xcosθ))dθ (x≠0)   =(π/(2x)) −(1/x) ∫_0 ^(π/2)   (dθ/(1+x cosθ)) but  ∫_0 ^(π/2)    (dθ/(1+xcosθ)) =_(tan((θ/2))=t)    ∫_0 ^1   (1/(1+x((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  = ∫_0 ^1    ((2dt)/(1+t^2  +x(1−t^2 ))) = ∫_0 ^1    ((2dt)/(1+x +(1−x)t^2 ))  =(2/(1+x)) ∫_0 ^1    (dt/(1+((1−x)/(1+x))t^2 ))  if ∣x∣<1 chang.(√((1−x)/(1+x)))t=u  =(2/(1+x))  ∫_0 ^(√((1−x)/(1+x)))     (1/(1+u^2 )) (√((1+x)/(1−x)))du  = (2/( (√(1−x^2 )))) arctan((√((1−x)/(1+x)))) ⇒  f^′ (x)= (π/(2x))  −(2/(x(√(1−x^2 )))) arctan((√((1−x)/(1+x))))⇒  f(x)=(π/2)ln∣x∣ −2 ∫    (1/(x(√(1−x^2 )))) arctan((√((1−x)/(1+x))))dx +c  be continued....
2)wehavef(x)=0π2cosθ1+xcosθ=1x0π2xcosθ+111+xcosθdθ(x0)=π2x1x0π2dθ1+xcosθbut0π2dθ1+xcosθ=tan(θ2)=t0111+x1t21+t22dt1+t2=012dt1+t2+x(1t2)=012dt1+x+(1x)t2=21+x01dt1+1x1+xt2ifx∣<1chang.1x1+xt=u=21+x01x1+x11+u21+x1xdu=21x2arctan(1x1+x)f(x)=π2x2x1x2arctan(1x1+x)f(x)=π2lnx21x1x2arctan(1x1+x)dx+cbecontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *