Question Number 40621 by math khazana by abdo last updated on 25/Jul/18
$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{xcos}\theta\right){d}\theta\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left(\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{ontehr}\:{serie} \\ $$
Answered by math khazana by abdo last updated on 27/Jul/18
$$\left.\mathrm{1}\right)\:{f}\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{cos}\theta\right){d}\theta\:=\:{I}\:{and}\:{let}\: \\ $$$${J}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}−{cos}\theta\right){d}\theta\:{we}\:{have}\: \\ $$$${I}\:+{J}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}−{cos}^{\mathrm{2}} \theta\right){d}\theta\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}^{\mathrm{2}} \theta\right){d}\theta \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left({sin}\theta\right){d}\theta\:=\mathrm{2}\left(−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\right)=−\pi{ln}\left(\mathrm{2}\right) \\ $$$${I}\:−{J}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{\mathrm{1}+{cos}\theta}{\mathrm{1}−{cos}\theta}\right){d}\theta \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left(\:\frac{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)}{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)}\right){d}\theta\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:−\mathrm{2}\:{ln}\left({tan}\left(\frac{\theta}{\mathrm{2}}\right)\right){d}\theta \\ $$$$=−\mathrm{2}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left({tan}\left(\frac{\theta}{\mathrm{2}}\right)\right){d}\theta \\ $$$$=_{\frac{\theta}{\mathrm{2}}={t}} \:−\mathrm{4}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left({tan}\left({t}\right)\right){dt} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left({tant}\right){dt}\:=_{{tant}\:={u}} \:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{ln}\left({u}\right)\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$\left.=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{ln}\left({u}\right)}{\mathrm{1}+{u}^{\mathrm{2}} }\:{du}\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({u}\right)\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{u}^{\mathrm{2}{n}} \right){du} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{u}^{\mathrm{2}{n}} \:{ln}\left({u}\right){du}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{A}_{{n}} \\ $$$${A}_{{n}} =\:\left[\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:{u}^{\mathrm{2}{n}+\mathrm{1}} {ln}\left({u}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{u}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)}{du} \\ $$$$=−\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:{ln}\left({tant}\right){dt}\:=\:−\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=−\lambda_{\mathrm{0}} \:\:\:\left({the}\:{value}\:{of}\:\lambda_{\mathrm{0}} \:{is}\:{known}\right)\:\Rightarrow \\ $$$${I}\:−{J}\:=\mathrm{4}\:\lambda_{\mathrm{0}} \:\:\Rightarrow\:{I}\:+{J}\:=\:−\pi\:{ln}\left(\mathrm{2}\right)\:{and} \\ $$$${I}\:−{J}\:=\mathrm{4}\lambda_{\mathrm{0}} \:\:\Rightarrow\:\mathrm{2}{I}\:=−\pi{ln}\left(\mathrm{2}\right)+\mathrm{4}\lambda_{\mathrm{0}} \:\Rightarrow \\ $$$${I}\:=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:+\mathrm{2}\lambda_{\mathrm{0}} \\ $$
Answered by math khazana by abdo last updated on 27/Jul/18
$$\left.\mathrm{2}\right)\:{we}\:{have}\:{f}^{'} \left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{cos}\theta}{\mathrm{1}+{x}\:{cos}\theta} \\ $$$$=\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{xcos}\theta\:+\mathrm{1}\:−\mathrm{1}}{\mathrm{1}+{xcos}\theta}{d}\theta\:\left({x}\neq\mathrm{0}\right)\: \\ $$$$=\frac{\pi}{\mathrm{2}{x}}\:−\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{d}\theta}{\mathrm{1}+{x}\:{cos}\theta}\:{but} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{d}\theta}{\mathrm{1}+{xcos}\theta}\:=_{{tan}\left(\frac{\theta}{\mathrm{2}}\right)={t}} \:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{1}}{\mathrm{1}+{x}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} \:+{x}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{x}\:+\left(\mathrm{1}−{x}\right){t}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}}{\mathrm{1}+{x}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dt}}{\mathrm{1}+\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}{t}^{\mathrm{2}} }\:\:{if}\:\mid{x}\mid<\mathrm{1}\:{chang}.\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}{t}={u} \\ $$$$=\frac{\mathrm{2}}{\mathrm{1}+{x}}\:\:\int_{\mathrm{0}} ^{\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}} \:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\sqrt{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}}{du} \\ $$$$=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{arctan}\left(\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}\right)\:\Rightarrow \\ $$$${f}^{'} \left({x}\right)=\:\frac{\pi}{\mathrm{2}{x}}\:\:−\frac{\mathrm{2}}{{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{arctan}\left(\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}\right)\Rightarrow \\ $$$${f}\left({x}\right)=\frac{\pi}{\mathrm{2}}{ln}\mid{x}\mid\:−\mathrm{2}\:\int\:\:\:\:\frac{\mathrm{1}}{{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{arctan}\left(\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}\right){dx}\:+{c} \\ $$$${be}\:{continued}…. \\ $$