let-f-x-0-pi-2-ln-1-xcost-dt-with-x-lt-1-1-developp-f-at-integr-serie-2-find-a-explicit-form-of-f-x-3-find-the-values-of-integrals-0-pi-2-ln-1-cost-dt-and-0-pi-2-ln-1-cost-dt-4- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 59247 by maxmathsup by imad last updated on 06/May/19 letf(x)=∫0π2ln(1−xcost)dtwith∣x∣<11)developpfatintegrserie2)findaexplicitformoff(x)3)findthevaluesofintegrals∫0π2ln(1−cost)dtand∫0π2ln(1+cost)dt4)calculateUn=∫0π2ln(1−2ncost)dtwithnintegrandn⩾2studytheconvergenceofUnandΣUn Commented by Mr X pcx last updated on 09/May/19 2)wehavef′(x)=∫0π2−cost1−xcostdtforx≠0f′(x)=1x∫0π21−xcost−11−xcostdt=π2x−1x∫0π2dt1−xcostbutchang.tan(t2)=ugive∫0π2dt1−xcost=∫0111−x1−u21+u22du1+u2=∫012du1+u2−x+xu2=∫012du(1+x)u2+1−x=21+x∫01duu2+1−x1+x=u=1−x1+xα21+x∫01+x1−x11−x1+x(1+α2)1−x1+xdα=21−x1−x1+x∫01+x1−xdα1+α2=21−x2[arctan(α)]01+x1−x=21−x2arctan(1+x1−x)⇒f′(x)=π2x−2x1−x2arctan(1+x1−x)⇒f(x)=π2ln∣x∣−∫2x1−x2arctan(1+x1−x)dx+c∫2x1−x2arctan(1+x1−x)dx=x=cost∫2cost.sintarctan(2cos2(t2)2sin2(t2))(−sint)dt=−2∫1sintarctan(1tan(t2))dt=−2∫1sint(π2−t2)dt=−π∫dtsint+∫tsintdt….becontinued… Commented by maxmathsup by imad last updated on 09/May/19 erroratline16wehave∫2x1−x2arctan(1+x1−x)dx=−2∫1cost(π2−t2)dt+c=−π∫dtcost+∫tcostdt+c⇒f(x)=π2ln∣x∣+π∫dtcost−∫tcostdt+c…. Answered by Mr X pcx last updated on 09/May/19 wehaveln′(1−u)=−11−u=−∑n=0∞unwith∣u∣<1⇒ln(1−u)=−∑n=0∞un+1n+1=−∑n=1∞unnwehave∣xcost∣<1⇒ln(1−xcost)=−∑n=1∞xncosntn⇒∫0π2ln(1−xcost)dt=−∑n=1∞xnn∫0π2cosn(t)=−∑n=1∞AnnxnwithAn=∫0π2cosntdt(integralofwallis). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-190318Next Next post: Question-190317 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.