Menu Close

let-f-x-0-pi-2-ln-1-xcost-dt-with-x-lt-1-1-developp-f-at-integr-serie-2-find-a-explicit-form-of-f-x-3-find-the-values-of-integrals-0-pi-2-ln-1-cost-dt-and-0-pi-2-ln-1-cost-dt-4-




Question Number 59247 by maxmathsup by imad last updated on 06/May/19
let f(x) =∫_0 ^(π/2) ln(1−xcost)dt  with ∣x∣<1  1) developp f at integr serie  2) find a explicit form of f(x)  3) find the values of integrals ∫_0 ^(π/2) ln(1−cost)dt  and ∫_0 ^(π/2) ln(1+cost)dt  4) calculate  U_n =∫_0 ^(π/2) ln(1−(2/n)cost)dt  with n integr and n≥2  study the convergence of U_n     and Σ U_n
letf(x)=0π2ln(1xcost)dtwithx∣<11)developpfatintegrserie2)findaexplicitformoff(x)3)findthevaluesofintegrals0π2ln(1cost)dtand0π2ln(1+cost)dt4)calculateUn=0π2ln(12ncost)dtwithnintegrandn2studytheconvergenceofUnandΣUn
Commented by Mr X pcx last updated on 09/May/19
2) we have f^′ (x) = ∫_0 ^(π/2)   ((−cost)/(1−xcost)) dt  for x≠0  f^′ (x) =(1/x)∫_0 ^(π/2)   ((1−xcost −1)/(1−xcost))dt  =(π/(2x)) −(1/x) ∫_0 ^(π/2)    (dt/(1−x cost))  but  chang.tan((t/2)) =u give  ∫_0 ^(π/2)   (dt/(1−xcost)) =∫_0 ^1    (1/(1−x((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  =∫_0 ^1   ((2du)/(1+u^2 −x+xu^2 )) =∫_0 ^1    ((2du)/((1+x)u^2  +1−x))  =(2/(1+x)) ∫_0 ^1     (du/(u^2  +((1−x)/(1+x))))  =_(u=(√((1−x)/(1+x)))α)     (2/(1+x)) ∫_0 ^(√((1+x)/(1−x)))    (1/(((1−x)/(1+x))(1+α^2 )))(√((1−x)/(1+x)))dα  =(2/(1−x)) ((√(1−x))/( (√(1+x)))) ∫_0 ^(√((1+x)/(1−x)))    (dα/(1+α^2 ))  =(2/( (√(1−x^2 )))) [arctan(α)]_0 ^(√((1+x)/(1−x)))   =(2/( (√(1−x^2 )))) arctan((√((1+x)/(1−x)))) ⇒  f^′ (x) =(π/(2x)) −(2/(x(√(1−x^2 )))) arctan((√((1+x)/(1−x)))) ⇒  f(x) =(π/2)ln∣x∣ −∫   (2/(x(√(1−x^2 )))) arctan((√((1+x)/(1−x))))dx +c  ∫  (2/(x(√(1−x^2 )))) arctan((√((1+x)/(1−x))))dx  =_(x =cost)    ∫  (2/(cost.sint)) arctan((√((2cos^2 ((t/2)))/(2sin^2 ((t/2))))))(−sint)dt  =−2 ∫   (1/(sint)) arctan((1/(tan((t/2)))))dt  =−2 ∫ (1/(sint))((π/2) −(t/2))dt  =−π ∫ (dt/(sint)) + ∫  (t/(sint)) dt ....be continued...
2)wehavef(x)=0π2cost1xcostdtforx0f(x)=1x0π21xcost11xcostdt=π2x1x0π2dt1xcostbutchang.tan(t2)=ugive0π2dt1xcost=0111x1u21+u22du1+u2=012du1+u2x+xu2=012du(1+x)u2+1x=21+x01duu2+1x1+x=u=1x1+xα21+x01+x1x11x1+x(1+α2)1x1+xdα=21x1x1+x01+x1xdα1+α2=21x2[arctan(α)]01+x1x=21x2arctan(1+x1x)f(x)=π2x2x1x2arctan(1+x1x)f(x)=π2lnx2x1x2arctan(1+x1x)dx+c2x1x2arctan(1+x1x)dx=x=cost2cost.sintarctan(2cos2(t2)2sin2(t2))(sint)dt=21sintarctan(1tan(t2))dt=21sint(π2t2)dt=πdtsint+tsintdt.becontinued
Commented by maxmathsup by imad last updated on 09/May/19
error at line 16    we have ∫    (2/(x(√(1−x^2 )))) arctan((√((1+x)/(1−x))))dx  =−2 ∫ (1/(cost))((π/2)−(t/2))dt+c =−π ∫(dt/(cost)) + ∫  (t/(cost)) dt +c ⇒  f(x) =(π/2)ln∣x∣ +π∫   (dt/(cost)) −∫   (t/(cost)) dt  +c ....
erroratline16wehave2x1x2arctan(1+x1x)dx=21cost(π2t2)dt+c=πdtcost+tcostdt+cf(x)=π2lnx+πdtcosttcostdt+c.
Answered by Mr X pcx last updated on 09/May/19
we have ln^′ (1−u) =((−1)/(1−u)) =−Σ_(n=0) ^∞  u^n   with ∣u∣<1 ⇒ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1))  =−Σ_(n=1) ^∞  (u^n /n)    we have ∣xcost∣<1 ⇒  ln(1−xcost) =−Σ_(n=1) ^∞  ((x^n  cos^n t)/n) ⇒  ∫_0 ^(π/2) ln(1−xcost)dt =−Σ_(n=1) ^∞ (x^n /n) ∫_0 ^(π/2)  cos^n (t)  =−Σ_(n=1) ^∞  (A_n /n) x^n    withA_n =∫_0 ^(π/2)  cos^n t dt  (integral of wallis) .
wehaveln(1u)=11u=n=0unwithu∣<1ln(1u)=n=0un+1n+1=n=1unnwehavexcost∣<1ln(1xcost)=n=1xncosntn0π2ln(1xcost)dt=n=1xnn0π2cosn(t)=n=1AnnxnwithAn=0π2cosntdt(integralofwallis).

Leave a Reply

Your email address will not be published. Required fields are marked *