Menu Close

let-f-x-0-pi-2-ln-1-xsint-1-xsint-dt-1-find-the-value-of-I-0-pi-2-ln-1-xsint-dt-and-J-0-pi-2-ln-1-xsint-dt-2-find-a-simple-form-of-f-x-3-developp-f-at-integr-serie-




Question Number 40624 by math khazana by abdo last updated on 25/Jul/18
let f(x)=∫_0 ^(π/2) ln(((1−xsint)/(1+xsint)))dt  .  1) find the value of  I = ∫_0 ^(π/2)  ln(1−xsint)dt  and J = ∫_0 ^(π/2) ln(1+xsint)dt  2) find a simple form of f(x)  3) developp f at integr serie
$${let}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\frac{\mathrm{1}−{xsint}}{\mathrm{1}+{xsint}}\right){dt}\:\:. \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{ln}\left(\mathrm{1}−{xsint}\right){dt} \\ $$$${and}\:{J}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{xsint}\right){dt} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{a}\:{simple}\:{form}\:{of}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *