Menu Close

let-f-x-0-pi-4-dt-x-tan-t-1-find-anoher-expression-off-x-2-calculate-0-pi-4-dt-2-tan-t-and-A-0-pi-4-dt-sin-tant-3-calculate-0-pi-4-dt-




Question Number 41847 by maxmathsup by imad last updated on 13/Aug/18
let f(x) = ∫_0 ^(π/4)      (dt/(x +tan(t)))  1) find anoher expression off (x)  2) calculate  ∫_0 ^(π/4)   (dt/(2+tan(t)))   and  A(θ) = ∫_0 ^(π/4)     (dt/(sinθ+tant))  3) calculate  ∫_0 ^(π/4)     (dt/((1+tant)^2 ))
letf(x)=0π4dtx+tan(t)1)findanoherexpressionoff(x)2)calculate0π4dt2+tan(t)andA(θ)=0π4dtsinθ+tant3)calculate0π4dt(1+tant)2
Answered by maxmathsup by imad last updated on 14/Aug/18
1) we have  f(x) = ∫_0 ^(π/4)      (dt/(x+tant))  changement tant =u give  f(x) = ∫_0 ^1       (du/((1+u^2 )(x+u)))  let decompose F(u) = (1/((x+u)(1+u^2 )))  F(u) =(a/(x+u)) +((bu +c)/(u^2  +1))  a =lim_(u→−x) (x+u)F(u) = (1/(1+x^2 ))  lim_(u→+∞) uF(u) =0 =a +b ⇒b=−(1/(1+x^2 )) ⇒F(u)=(1/((1+x^2 )(u+x))) +((−(1/(1+x^2 ))u +c)/(u^2  +1))  F(0) =(1/x) = (1/(x(1+x^2 ))) +c ⇒1 =(1/(1+x^2 )) +xc ⇒xc =1−(1/(1+x^2 )) ⇒  xc =(x^2 /(1+x^2 )) ⇒ c =(x/(1+x^2 ))  ( we suppose x≠0) ⇒  F(u) =  (1/((1+x^2 )(u+x))) −(1/(1+x^2 ))   ((u−x)/(u^2  +1)) ⇒  f(x) = (1/(1+x^2 )) {    ∫_0 ^1    (du/(u+x)) −(1/2)∫_0 ^1     ((2u)/(u^2  +1))du  +x ∫_0 ^1    (du/(1+u^2 ))}  =(1/(1+x^2 )){  [ln∣u+x∣_0 ^1  −(1/2)[ln∣u^2  +1∣]_0 ^1     +x [arctanu ]_0 ^1 }  f(x)=(1/(1+x^2 )){ ln∣1+x∣−ln∣x∣ −(1/2)ln(2) +((πx)/4)}
1)wehavef(x)=0π4dtx+tantchangementtant=ugivef(x)=01du(1+u2)(x+u)letdecomposeF(u)=1(x+u)(1+u2)F(u)=ax+u+bu+cu2+1a=limux(x+u)F(u)=11+x2limu+uF(u)=0=a+bb=11+x2F(u)=1(1+x2)(u+x)+11+x2u+cu2+1F(0)=1x=1x(1+x2)+c1=11+x2+xcxc=111+x2xc=x21+x2c=x1+x2(wesupposex0)F(u)=1(1+x2)(u+x)11+x2uxu2+1f(x)=11+x2{01duu+x12012uu2+1du+x01du1+u2}=11+x2{[lnu+x0112[lnu2+1]01+x[arctanu]01}f(x)=11+x2{ln1+xlnx12ln(2)+πx4}
Commented by maxmathsup by imad last updated on 14/Aug/18
2)  ∫_0 ^(π/4)     (dt/(2 +tan(t))) =f(2) = (1/5){ ln(3)−ln(2)−(1/2)ln(2) +(π/2)}  =(1/5){ ln(3)−(3/2)ln(2) +(π/2)}  also we have  ∫_0 ^(π/4)     (dt/(sinθ +tant)) =f(sinθ) =(1/(1+sin^2 θ)){ ln(1+sin^2 θ)−ln∣sinθ∣−(1/2)ln(2)+((πsinπ)/4)}
2)0π4dt2+tan(t)=f(2)=15{ln(3)ln(2)12ln(2)+π2}=15{ln(3)32ln(2)+π2}alsowehave0π4dtsinθ+tant=f(sinθ)=11+sin2θ{ln(1+sin2θ)lnsinθ12ln(2)+πsinπ4}
Commented by maxmathsup by imad last updated on 14/Aug/18
3) we have  f^′ (x) =− ∫_0 ^(π/4)     (dt/((x+tant)^2 )) ⇒∫_0 ^(π/4)   (dt/((x+tant)^2 )) =−f^′ (x)  but  (1+x^2 )f(x) =ln∣1+x∣ −ln∣x∣ −((ln(2))/2) +((πx)/4)    by derivation  2xf(x) +(1+x^2 )f^′ (x)= (1/(1+x)) −(1/x) +(π/4) ⇒  2 f(1) +2 f^′ (1) = (1/2) −1 +(π/4) =−(1/2) +(π/4) ⇒f(1) +f^′ (1) =−(1/4) +(π/8) ⇒  f^′ (1) =(π/8) −(1/4) −f(1)  and   ∫_0 ^(π/4)     (dt/((1+tant)^2 )) =−f^′ (1) =−(π/8) +(1/4) +f(1)  =−(π/8) +(1/4)  +(1/2){ln(2)−(1/2)ln(2) +(π/4)}=−(π/8) +(1/4) +((ln(2))/4) +(π/8)  =(1/4) +((ln(2))/4) .
3)wehavef(x)=0π4dt(x+tant)20π4dt(x+tant)2=f(x)but(1+x2)f(x)=ln1+xlnxln(2)2+πx4byderivation2xf(x)+(1+x2)f(x)=11+x1x+π42f(1)+2f(1)=121+π4=12+π4f(1)+f(1)=14+π8f(1)=π814f(1)and0π4dt(1+tant)2=f(1)=π8+14+f(1)=π8+14+12{ln(2)12ln(2)+π4}=π8+14+ln(2)4+π8=14+ln(2)4.

Leave a Reply

Your email address will not be published. Required fields are marked *