Menu Close

let-f-x-0-pi-4-ln-1-x-2-cos-d-with-x-lt-1-1-find-a-explicit-form-of-f-x-2-calculate-0-pi-4-ln-1-1-4-cos-d-




Question Number 49806 by maxmathsup by imad last updated on 10/Dec/18
let f(x) =∫_0 ^(π/4) ln(1−x^2 cosθ)dθ   with  ∣x∣<1  1) find a explicit form of f(x)  2) calculate ∫_0 ^(π/4) ln(1−(1/4)cosθ)dθ .
letf(x)=0π4ln(1x2cosθ)dθwithx∣<11)findaexplicitformoff(x)2)calculate0π4ln(114cosθ)dθ.
Commented by Abdo msup. last updated on 12/Dec/18
1) we have f^′ (x)=∫_0 ^(π/4)  ((−2xcosθ)/(1−x^2 cosθ)) dθ  =(2/x) ∫_0 ^(π/4)   ((1−x^2 cosθ −1)/(1−x^2 cosθ)) dθ  =(π/(2x)) −(2/x) ∫_0 ^(π/4)    (dθ/(1−x^2 cosθ)) let find ∫_0 ^(π/4)    (dθ/(1−x^2 cosθ))  changement  tan((θ/2))=t ⇒  ∫_0 ^(π/4)   (dθ/(1−x^2 cosθ)) =∫_0 ^((√2)−1)       (1/(1−x^2 ((1−t^2 )/(1+t^2 )))) ((2t)/(1+t^2 ))  = ∫_0 ^((√2)−1)       ((2dt)/(1+t^2  −x^2  +x^2 t^2 )) =∫_0 ^((√2)−1)    ((2dt)/(1−x^2  +(1+x^2 )t^2 ))  =(2/(1−x^2 )) ∫_0 ^((√2)−1)     (dt/(1+((1+x^2 )/(1−x^2 ))t^2 ))let suppose ∣x∣<1  =_((√(((1+x^2 )/(1−x^2 ))t))=u)     (2/(1−x^2 )) ∫_0 ^(((√2)−1)(√((1+x^2 )/(1−x^2 ))))      (1/(1+u^2 )) (√((1−x^2 )/(1+x^2 )))du  =(2/( (√(1−x^4 )))) arctan{((√2)−1)(√((1+x^2 )/(1−x^2 )))} ⇒  f^′ (x)= (π/(2x)) −(1/(x(√(1−x^4 )))) arctan{((√2)−1)(√((1+x^2 )/(1−x^2 )))} ⇒  f(x)=(π/2)ln∣x∣ −∫_1 ^x  (1/(t(√(1−t^4 )))) arctan{((√2)−1)(√((1+t^2 )/(1−t^2 )))} +λ
1)wehavef(x)=0π42xcosθ1x2cosθdθ=2x0π41x2cosθ11x2cosθdθ=π2x2x0π4dθ1x2cosθletfind0π4dθ1x2cosθchangementtan(θ2)=t0π4dθ1x2cosθ=02111x21t21+t22t1+t2=0212dt1+t2x2+x2t2=0212dt1x2+(1+x2)t2=21x2021dt1+1+x21x2t2letsupposex∣<1=1+x21x2t=u21x20(21)1+x21x211+u21x21+x2du=21x4arctan{(21)1+x21x2}f(x)=π2x1x1x4arctan{(21)1+x21x2}f(x)=π2lnx1x1t1t4arctan{(21)1+t21t2}+λ

Leave a Reply

Your email address will not be published. Required fields are marked *