Menu Close

let-f-x-0-pi-4-ln-1-xtant-dt-1-find-f-x-at-a-simple-form-2-calculate-0-pi-4-ln-1-2tan-t-dt-




Question Number 48717 by Abdo msup. last updated on 27/Nov/18
let  f(x)=∫_0 ^(π/4) ln(1+xtant)dt  1) find f(x) at a simple form  2)calculate ∫_0 ^(π/4) ln(1+2tan(t))dt
letf(x)=0π4ln(1+xtant)dt1)findf(x)atasimpleform2)calculate0π4ln(1+2tan(t))dt
Commented by maxmathsup by imad last updated on 01/Dec/18
1) we hsve f^′ (x)= ∫_0 ^(π/4)  ((tant)/(1+xtant))dt =(1/x) ∫_0 ^(π/4)   ((1+xtant −1)/(1+xtan(t))) dt   ( x≠o)  =(π/(4x)) −(1/x) ∫_0 ^(π/4)  (dt/(1+xtant))  but  ∫_0 ^(π/4)    (dt/(1+xtant)) =_(tant=u)   ∫_0 ^1    (1/(1+xu)) (du/(1+u^2 ))  = ∫_0 ^1    (du/((1+u^2 )(1+xu)))  let decompose F(u)= (1/((1+xu)(1+u^2 )))  F(u)= (a/(xu +1)) +((bu +c)/(u^2  +1))  a =lim_(u→−(1/x))    (xu+1)F(u) =(1/(1+(1/x^2 ))) =(x^2 /(1+x^2 ))  lim_(u→+∞) u F(u) =(a/x) +b  =0 ⇒b =−(a/x) =−(x/(1+x^2 )) ⇒  F(u)=(x^2 /((x^2  +1)(xu+1))) +((−(x/(1+x^2 ))u+ c)/(u^2  +1))  F(0)=1 = (x^2 /(x^2  +1)) + c ⇒c=1−(x^2 /(x^2  +1)) =(1/(x^2  +1)) ⇒  F(u)= (x^2 /((x^2  +1)(xu+1))) −(1/(x^2  +1)) ((xu−1)/(u^2  +1)) ⇒  ∫_0 ^1    (du/((1+u^2 )(1+xu))) =(x^2 /((x^2  +1))) ∫_0 ^1   (du/(xu +1)) −(x/(2(x^2  +1))) ∫_0 ^1   ((2u)/(u^2  +1))du +(1/(1+x^2 )) ∫_0 ^1  (du/(1+u^2 ))  =(x/(x^2 +1))[ln∣xu+1∣]_(u=0) ^1  −(x/(2(x^2  +1)))[ln(u^2  +1)]_(u=0) ^1  +(1/(1+x^2 ))[arctanu]_(u=0) ^1   =(x/(x^2  +1))ln∣x+1∣ −((xln(2))/(2(x^2  +1))) +(π/(4(1+x^2 ))) ⇒f^′ (x)=(x/(x^2  +1))ln∣x+1∣−((xln(2))/(2(x^2  +1)))  +(π/(4(1+x^2 ))) ⇒f(x)= ∫  ((xln∣x+1∣)/(x^2  +1))dx−((ln(2))/4)ln(x^2  +1) +(π/4) arctanx  +c   if  we suppose x>−1    by parts u^′ =(x/(x^2  +1))  and v=ln(x+1) we get  ∫  ((x ln(x+1))/(x^2  +1))dx =((xln(x+1))/(2(x^2  +1))) −∫  ((ln(x^2  +1))/(1+x)) dx ....be continued...
1)wehsvef(x)=0π4tant1+xtantdt=1x0π41+xtant11+xtan(t)dt(xo)=π4x1x0π4dt1+xtantbut0π4dt1+xtant=tant=u0111+xudu1+u2=01du(1+u2)(1+xu)letdecomposeF(u)=1(1+xu)(1+u2)F(u)=axu+1+bu+cu2+1a=limu1x(xu+1)F(u)=11+1x2=x21+x2limu+uF(u)=ax+b=0b=ax=x1+x2F(u)=x2(x2+1)(xu+1)+x1+x2u+cu2+1F(0)=1=x2x2+1+cc=1x2x2+1=1x2+1F(u)=x2(x2+1)(xu+1)1x2+1xu1u2+101du(1+u2)(1+xu)=x2(x2+1)01duxu+1x2(x2+1)012uu2+1du+11+x201du1+u2=xx2+1[lnxu+1]u=01x2(x2+1)[ln(u2+1)]u=01+11+x2[arctanu]u=01=xx2+1lnx+1xln(2)2(x2+1)+π4(1+x2)f(x)=xx2+1lnx+1xln(2)2(x2+1)+π4(1+x2)f(x)=xlnx+1x2+1dxln(2)4ln(x2+1)+π4arctanx+cifwesupposex>1bypartsu=xx2+1andv=ln(x+1)wegetxln(x+1)x2+1dx=xln(x+1)2(x2+1)ln(x2+1)1+xdx.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *