let-f-x-0-pi-4-ln-1-xtant-dt-1-find-f-x-at-a-simple-form-2-calculate-0-pi-4-ln-1-2tan-t-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 48717 by Abdo msup. last updated on 27/Nov/18 letf(x)=∫0π4ln(1+xtant)dt1)findf(x)atasimpleform2)calculate∫0π4ln(1+2tan(t))dt Commented by maxmathsup by imad last updated on 01/Dec/18 1)wehsvef′(x)=∫0π4tant1+xtantdt=1x∫0π41+xtant−11+xtan(t)dt(x≠o)=π4x−1x∫0π4dt1+xtantbut∫0π4dt1+xtant=tant=u∫0111+xudu1+u2=∫01du(1+u2)(1+xu)letdecomposeF(u)=1(1+xu)(1+u2)F(u)=axu+1+bu+cu2+1a=limu→−1x(xu+1)F(u)=11+1x2=x21+x2limu→+∞uF(u)=ax+b=0⇒b=−ax=−x1+x2⇒F(u)=x2(x2+1)(xu+1)+−x1+x2u+cu2+1F(0)=1=x2x2+1+c⇒c=1−x2x2+1=1x2+1⇒F(u)=x2(x2+1)(xu+1)−1x2+1xu−1u2+1⇒∫01du(1+u2)(1+xu)=x2(x2+1)∫01duxu+1−x2(x2+1)∫012uu2+1du+11+x2∫01du1+u2=xx2+1[ln∣xu+1∣]u=01−x2(x2+1)[ln(u2+1)]u=01+11+x2[arctanu]u=01=xx2+1ln∣x+1∣−xln(2)2(x2+1)+π4(1+x2)⇒f′(x)=xx2+1ln∣x+1∣−xln(2)2(x2+1)+π4(1+x2)⇒f(x)=∫xln∣x+1∣x2+1dx−ln(2)4ln(x2+1)+π4arctanx+cifwesupposex>−1bypartsu′=xx2+1andv=ln(x+1)weget∫xln(x+1)x2+1dx=xln(x+1)2(x2+1)−∫ln(x2+1)1+xdx….becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: For-a-cubic-function-in-the-form-f-x-ax-3-bx-2-cx-d-What-must-be-true-of-a-b-c-and-d-in-order-for-the-function-to-be-able-to-be-converted-to-the-form-f-x-a-x-h-3-k-Next Next post: find-x-2-x-2-4x-3-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.