Question Number 64873 by mathmax by abdo last updated on 22/Jul/19

Commented by mathmax by abdo last updated on 23/Jul/19
![1)f(x) =∫_0 ^π (dt/(x+sint)) changement tan((t/2))=u give f(x) =∫_0 ^∞ (1/(x+((2u)/(1+u^2 )))) ((2du)/(1+u^2 )) =∫_0 ^∞ ((2du)/(x+xu^2 +2u)) =∫_0 ^∞ ((2du)/(xu^2 +2u +x)) xu^2 +2u +x =0→Δ^′ =1−x^2 case 1 1−x^2 >0 ⇒∣x∣<1 ⇒u_1 =((−1+(√(1−x^2 )))/x) and u_2 =((−1−(√(1−x^2 )))/x) ( x≠0) ⇒f(x) =∫_0 ^∞ ((2du)/(x(u−u_1 )(u−u_2 ))) =(2/x)(1/((2(√(1−x^2 )))/x))∫_0 ^∞ ((1/(u−u_1 ))−(1/(u−u_2 )))du =(1/( (√(1−x^2 ))))[ln∣((u−u_1 )/(u−u_2 ))∣]_0 ^(+∞) =(1/( (√(1−x^2 )))){−ln(∣(u_1 /u_2 )∣)} =(1/( (√(1−x^2 ))))ln∣((1+(√(1−x^2 )))/(1−(√(1−x^2 ))))∣ case 2 1−x^2 <0 ⇒∣x∣>1 ⇒xu^2 +2u +x =x(u^2 +((2u)/x) +1) =x{ u^2 +2(u/x) +(1/x^2 ) +1−(1/x^2 )} =x{ (u+(1/x))^2 +((x^2 −1)/x^2 )} we use the changement u+(1/x) =((√(x^2 −1))/(∣x∣)) u ⇒ f(x) = ∫_0 ^∞ ((2du)/(x{(u+(1/x))^(2 ) +((x^2 −1)/x^2 )})) =(2/x)∫_0 ^∞ (1/(((x^2 −1)/x^2 )(1+u^2 )))((√(x^2 −1))/(∣x∣)) du =((2x^2 )/(x∣x∣)) ((√(x^2 −1))/(x^2 −1)) ∫_0 ^∞ (du/(1+u^2 )) =2ξ(x)(1/( (√(x^2 −1)))) (π/2) =((πξ(x))/( (√(x^2 −1)))) with ξ(x) =1 if x>0 and ξ(x)=−1 if x<0 x =0 ⇒f(x)=∫_0 ^π (dt/(sint)) =_(tan((t/2))=u) ∫_0 ^∞ (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 )) =∫_0 ^∞ (du/u) f(x)dont exist (the integral diverges!)](https://www.tinkutara.com/question/Q64900.png)
Commented by mathmax by abdo last updated on 23/Jul/19

Commented by mathmax by abdo last updated on 23/Jul/19

Commented by mathmax by abdo last updated on 23/Jul/19
