Menu Close

let-f-x-0-pi-dt-x-sint-with-xreal-1-find-a-explicit-form-of-f-x-2-find-also-g-x-0-pi-dt-x-sint-2-3-give-f-n-x-at-form-of-integral-4-calculate-0-pi-dt-3-sint-




Question Number 64873 by mathmax by abdo last updated on 22/Jul/19
let f(x) =∫_0 ^π   (dt/(x+sint))   with xreal  1) find a explicit form of f(x)  2) find also g(x) =∫_0 ^π   (dt/((x+sint)^2 ))  3) give f^((n)) (x) at form of integral  4) calculate ∫_0 ^π   (dt/(3+sint))  and ∫_0 ^π   (dt/((3+sint)^2 ))
letf(x)=0πdtx+sintwithxreal1)findaexplicitformoff(x)2)findalsog(x)=0πdt(x+sint)23)givef(n)(x)atformofintegral4)calculate0πdt3+sintand0πdt(3+sint)2
Commented by mathmax by abdo last updated on 23/Jul/19
1)f(x) =∫_0 ^π  (dt/(x+sint))  changement tan((t/2))=u give  f(x) =∫_0 ^∞   (1/(x+((2u)/(1+u^2 )))) ((2du)/(1+u^2 )) =∫_0 ^∞    ((2du)/(x+xu^2  +2u)) =∫_0 ^∞   ((2du)/(xu^2  +2u +x))  xu^2  +2u +x =0→Δ^′  =1−x^2   case 1  1−x^2 >0 ⇒∣x∣<1 ⇒u_1 =((−1+(√(1−x^2 )))/x)  and u_2 =((−1−(√(1−x^2 )))/x)  ( x≠0) ⇒f(x) =∫_0 ^∞   ((2du)/(x(u−u_1 )(u−u_2 )))  =(2/x)(1/((2(√(1−x^2 )))/x))∫_0 ^∞  ((1/(u−u_1 ))−(1/(u−u_2 )))du =(1/( (√(1−x^2 ))))[ln∣((u−u_1 )/(u−u_2 ))∣]_0 ^(+∞)   =(1/( (√(1−x^2 )))){−ln(∣(u_1 /u_2 )∣)} =(1/( (√(1−x^2 ))))ln∣((1+(√(1−x^2 )))/(1−(√(1−x^2 ))))∣  case 2  1−x^2 <0 ⇒∣x∣>1  ⇒xu^2  +2u +x =x(u^2  +((2u)/x) +1)  =x{ u^2  +2(u/x) +(1/x^2 ) +1−(1/x^2 )} =x{ (u+(1/x))^2  +((x^2 −1)/x^2 )} we use the  changement u+(1/x) =((√(x^2 −1))/(∣x∣)) u ⇒  f(x) = ∫_0 ^∞    ((2du)/(x{(u+(1/x))^(2 )  +((x^2 −1)/x^2 )})) =(2/x)∫_0 ^∞   (1/(((x^2 −1)/x^2 )(1+u^2 )))((√(x^2 −1))/(∣x∣)) du  =((2x^2 )/(x∣x∣)) ((√(x^2 −1))/(x^2 −1)) ∫_0 ^∞  (du/(1+u^2 )) =2ξ(x)(1/( (√(x^2 −1)))) (π/2) =((πξ(x))/( (√(x^2 −1)))) with  ξ(x) =1 if x>0  and ξ(x)=−1 if x<0  x =0 ⇒f(x)=∫_0 ^π  (dt/(sint)) =_(tan((t/2))=u)    ∫_0 ^∞   (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 )) =∫_0 ^∞ (du/u)  f(x)dont exist (the integral diverges!)
1)f(x)=0πdtx+sintchangementtan(t2)=ugivef(x)=01x+2u1+u22du1+u2=02dux+xu2+2u=02duxu2+2u+xxu2+2u+x=0Δ=1x2case11x2>0⇒∣x∣<1u1=1+1x2xandu2=11x2x(x0)f(x)=02dux(uu1)(uu2)=2x121x2x0(1uu11uu2)du=11x2[lnuu1uu2]0+=11x2{ln(u1u2)}=11x2ln1+1x211x2case21x2<0⇒∣x∣>1xu2+2u+x=x(u2+2ux+1)=x{u2+2ux+1x2+11x2}=x{(u+1x)2+x21x2}weusethechangementu+1x=x21xuf(x)=02dux{(u+1x)2+x21x2}=2x01x21x2(1+u2)x21xdu=2x2xxx21x210du1+u2=2ξ(x)1x21π2=πξ(x)x21withξ(x)=1ifx>0andξ(x)=1ifx<0x=0f(x)=0πdtsint=tan(t2)=u012u1+u22du1+u2=0duuf(x)dontexist(theintegraldiverges!)
Commented by mathmax by abdo last updated on 23/Jul/19
2) we have f^′ (x) =−∫_0 ^π   (dt/((x +sint)^2 )) =−g(x) ⇒g(x)=−f^′ (x)  if  ∣x∣>1  f(x) =((πξ(x))/( (√(x^2 −1)))) ⇒f^′ (x) =πξ(x){(x^2 −1)^(−(1/2)) }^((1))   =πξ(x)(−(1/2))(2x)(x^2 −1)^(−(3/2))  =−((πxξ(x))/((x^2 −1)(√(x^2 −1)))) ⇒  g(x) =((πxξ(x))/((x^2 −1)(√(x^2 −1))))  if ∣x∣<1   (x≠0)  f(x)=(1/( (√(1−x^2 ))))ln∣((1+(√(1−x^2 )))/(1−(√(1−x^2 ))))∣ ⇒  f^′ (x)={(1−x^2 )^(−(1/2)) }^((1)) ln∣((1+(√(1−x^2 )))/(1−(√(1−x^2 ))))∣+(1/( (√(1−x^2 )))) ((w^′ (x))/(w(x)))  with w(x) =((1+(√(1−x^2 )))/(1−(√(1−x^2 )))) ⇒w^′ (x) =((((−2x)/(2(√(1−x^2 ))))(1−(√(1−x^2 )))−((x/( (√(1−x^2 )))))(1+(√(1−x^2 ))))/((1−(√(1−x^2 )))^2 ))  =((−(x/( (√(1−x^2 )))) +x −(x/( (√(1−x^2 ))))−x)/((1−(√(1−x^2 )))^2 )) =((−2x)/( (√(1−x^2 ))(1−(√(1−x^2 ))))) ⇒  f^′ (x) =(x/((1−x^2 )(√(1−x^2 ))))ln∣((1+(√(1−x^2 )))/(1−(√(1−x^2 ))))∣+(1/( (√(1−x^2 )))) ((−2x)/( (√(1−x^2 ))(1−(√(1−x^2 )))))×((1−(√(1−x^2 )))/(1+(√(1−x^2 ))))  =....
2)wehavef(x)=0πdt(x+sint)2=g(x)g(x)=f(x)ifx∣>1f(x)=πξ(x)x21f(x)=πξ(x){(x21)12}(1)=πξ(x)(12)(2x)(x21)32=πxξ(x)(x21)x21g(x)=πxξ(x)(x21)x21ifx∣<1(x0)f(x)=11x2ln1+1x211x2f(x)={(1x2)12}(1)ln1+1x211x2+11x2w(x)w(x)withw(x)=1+1x211x2w(x)=2x21x2(11x2)(x1x2)(1+1x2)(11x2)2=x1x2+xx1x2x(11x2)2=2x1x2(11x2)f(x)=x(1x2)1x2ln1+1x211x2+11x22x1x2(11x2)×11x21+1x2=.
Commented by mathmax by abdo last updated on 23/Jul/19
3)we have f(x) =∫_0 ^π  (dt/((x+sint))) ⇒f^((n)) (x) =∫_0 ^π  (((−1)^n n!)/((x+sint)^(n+1) ))dt  =(−1)^n n! ∫_0 ^π   (dt/((x+sint)^(n+1) ))
3)wehavef(x)=0πdt(x+sint)f(n)(x)=0π(1)nn!(x+sint)n+1dt=(1)nn!0πdt(x+sint)n+1
Commented by mathmax by abdo last updated on 23/Jul/19
4) ∫_0 ^π   (dt/(3+sint)) =f(3) =((π×1)/( (√(3^2 −1)))) =(π/( (√8))) =(π/(2(√2)))  ∫_0 ^π   (dt/((3+sint)^2 )) =g(3) =((3π×1)/((3^2 −1)(√(3^2 −1)))) =((3π)/(8(√8))) =((3π)/(8(2(√2)))) =((3π)/(16(√2))) .
4)0πdt3+sint=f(3)=π×1321=π8=π220πdt(3+sint)2=g(3)=3π×1(321)321=3π88=3π8(22)=3π162.

Leave a Reply

Your email address will not be published. Required fields are marked *