let-F-x-0-pi-ln-1-xcos-d-with-x-lt-1-find-F-x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 32365 by prof Abdo imad last updated on 23/Mar/18 letF(x)=∫0πln(1+xcosθ)dθ.with∣x∣<1findF(x). Commented by prof Abdo imad last updated on 25/Mar/18 wehaveF′(x)=∫0πcosθ1+xcosθdθandforx≠odFdx(x)=1x∫0πxcoθ+1−11+xcosθdθ=πx−1x∫0πdθ1+xcosθbutch.tan(θ2)=tgive∫0πdθ1+xcosθ=∫0∞11+x1−t21+t22dt1+t2=∫0∞2dt1+t2+x−xt2=∫0∞2dt1+x+(1−x)t2=11+x∫0∞2dt1+1−x1+xt2=u=1−x1+xt11+x∫0∞2dt1+u21+x1−xdu=21−x2π2=π1−x2dFdx(x)=πx−πx1−x2⇒F(x)=πln∣x∣−π∫dxx1−x2+λch.x=sintgive∫dxx1−x2=∫costsintcostdt=∫dtsintch.tan(t2)=u⇒∫dtsint=∫12u1+u22du1+u2=∫duu=ln∣u∣=ln∣tan(t2)∣=ln∣tan(arcsinx2)∣F(x)=πln∣x∣−πln∣tan(arcsinx2)∣+λλ=F(1)=∫0πln(1+cosθ)dθ Commented by prof Abdo imad last updated on 25/Mar/18 ∫0πln(1+cosθ)dθ=∫0πln(2cos2(θ2))dθ=πln(2)+2∫0πln(cos(θ2))dθ=θ2=tπln(2)+2∫0π2ln(cost)2dt=πln(2)+4∫0π2ln(cost)dt=πln(2)+4(−πln22)=−πln(2)finallyF(x)=πln∣x∣−πln∣tan(arcsinx2)∣−πln(2). Commented by prof Abdo imad last updated on 25/Mar/18 F(0)=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-163433Next Next post: Question-163439 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.