Menu Close

let-F-x-0-pi-ln-1-xcos-d-with-x-lt-1-find-F-x-




Question Number 32365 by prof Abdo imad last updated on 23/Mar/18
let F(x) = ∫_0 ^π  ln(1+xcosθ)dθ .with ∣x∣<1  find F(x) .
letF(x)=0πln(1+xcosθ)dθ.withx∣<1findF(x).
Commented by prof Abdo imad last updated on 25/Mar/18
we have F^′ (x)= ∫_0 ^π   ((cosθ)/(1+xcosθ))dθ and for x≠o  (dF/dx)(x)=(1/x) ∫_0 ^π   ((xcoθ +1−1)/(1+x cosθ)) dθ  =(π/x) −(1/x)∫_0 ^π    (dθ/(1+xcosθ))  but ch. tan((θ/2))=t give  ∫_0 ^π    (dθ/(1+xcosθ)) = ∫_0 ^∞    (1/(1+x((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  = ∫_0 ^∞     ((2dt)/(1+t^2  +x −xt^2 )) = ∫_0 ^∞    ((2dt)/(1+x +(1−x)t^2 ))  =(1/(1+x)) ∫_0 ^∞     ((2dt)/(1+((1−x)/(1+x))t^2 ))  =_(u=(√((1−x)/(1+x))) t)    (1/(1+x)) ∫_0 ^∞    ((2dt)/(1+u^2 )) ((√(1+x))/( (√(1−x)))) du  =  (2/( (√(1−x^2 )))) (π/2) = (π/( (√(1−x^2 ))))  (dF/dx)(x)= (π/x)  −(π/(x(√(1−x^2 )))) ⇒  F(x)= πln∣x∣  −π ∫   (dx/(x(√(1−x^2 ))))  +λch. x=sint give  ∫    (dx/(x(√(1−x^2 )))) =  ∫   ((cost)/(sint cost))dt = ∫   (dt/(sint))  ch.tan((t/2))=u ⇒ ∫  (dt/(sint)) = ∫ (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 ))  = ∫  (du/u) =ln∣u∣ =ln∣tan((t/2))∣=ln∣tan(((arcsinx)/2))∣  F(x) = π ln∣x∣ −π ln∣tan(((arcsinx)/2))∣ +λ  λ =F(1) =∫_0 ^π  ln(1+cosθ)dθ
wehaveF(x)=0πcosθ1+xcosθdθandforxodFdx(x)=1x0πxcoθ+111+xcosθdθ=πx1x0πdθ1+xcosθbutch.tan(θ2)=tgive0πdθ1+xcosθ=011+x1t21+t22dt1+t2=02dt1+t2+xxt2=02dt1+x+(1x)t2=11+x02dt1+1x1+xt2=u=1x1+xt11+x02dt1+u21+x1xdu=21x2π2=π1x2dFdx(x)=πxπx1x2F(x)=πlnxπdxx1x2+λch.x=sintgivedxx1x2=costsintcostdt=dtsintch.tan(t2)=udtsint=12u1+u22du1+u2=duu=lnu=lntan(t2)∣=lntan(arcsinx2)F(x)=πlnxπlntan(arcsinx2)+λλ=F(1)=0πln(1+cosθ)dθ
Commented by prof Abdo imad last updated on 25/Mar/18
∫_0 ^π  ln(1+cosθ)dθ = ∫_0 ^π  ln(2cos^2 ((θ/2)))dθ  = πln(2) +2 ∫_0 ^π  ln(cos((θ/2)))dθ  =_((θ/2)=t)   πln(2) +2 ∫_0 ^(π/2)  ln(cost)2dt  =π ln(2) +4 ∫_0 ^(π/2) ln(cost)dt  = π ln(2) +4(−((πln2)/2)) = −πln(2) finally  F(x) = π ln∣x∣ −π ln∣tan(((arcsinx)/2))∣ −πln(2).
0πln(1+cosθ)dθ=0πln(2cos2(θ2))dθ=πln(2)+20πln(cos(θ2))dθ=θ2=tπln(2)+20π2ln(cost)2dt=πln(2)+40π2ln(cost)dt=πln(2)+4(πln22)=πln(2)finallyF(x)=πlnxπlntan(arcsinx2)πln(2).
Commented by prof Abdo imad last updated on 25/Mar/18
F(0) =0
F(0)=0

Leave a Reply

Your email address will not be published. Required fields are marked *