Menu Close

let-f-x-0-sin-xt-2-1-t-4-1-dt-1-find-a-explicit-form-of-f-x-2-let-g-x-0-t-2-cos-xt-2-1-t-4-1-dt-find-a-explicit-form-of-g-x-3-calculate-0-sin-




Question Number 57237 by maxmathsup by imad last updated on 31/Mar/19
let f(x) =∫_0 ^(+∞)   ((sin(xt^2 −1))/(t^4  +1)) dt  1) find  a explicit form of f(x)  2) let g(x) =∫_0 ^∞    ((t^2  cos(xt^2 −1))/(t^4  +1)) dt  find a explicit form of g(x)  3) calculate ∫_0 ^∞   ((sin(2t^2 −1))/(t^4  +1)) dt  and   ∫_0 ^∞   ((t^2  cos(3t^2 −1))/(t^4  +1)) dt .
letf(x)=0+sin(xt21)t4+1dt1)findaexplicitformoff(x)2)letg(x)=0t2cos(xt21)t4+1dtfindaexplicitformofg(x)3)calculate0sin(2t21)t4+1dtand0t2cos(3t21)t4+1dt.
Commented by maxmathsup by imad last updated on 05/Apr/19
1) we have 2f(x)=∫_(−∞) ^(+∞)    ((sin(xt^2 −1))/(t^4  +1))dt =Im (∫_(−∞) ^(+∞)   (e^(i(xt^2 −1)) /(t^4  +1))dt)  let ϕ(z) =(e^(i(xz^2 −1)) /(z^4  +1)) ⇒ϕ(z) =(e^(i(xz^2 −1)) /((z^2 −i)(z^2  +i))) =(e^(i(xz^2 −1)) /((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  so the poles of ϕ are +^−  e^((iπ)/4)  and +^− e^(−((iπ)/4))    residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ {Res(ϕ,e^((iπ)/4) )+Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,e^((iπ)/4) ) =lim_(z→e^((iπ)/4) )    (z−e^((iπ)/4) )ϕ(z) = (e^(i(x(i)−1)) /(2e^((iπ)/4) (2i))) =((e^(−x)  e^(−i) )/(4i e^((iπ)/4) )) =(e^(−x) /(4i)) e^(−(1+(π/4))i)   Res(ϕ,−e^(−((iπ)/4)) ) =lim_(z→−e^(−((iπ)/4)) )    (z+e^(−((iπ)/4)) )ϕ(z) = (e^(i(−xi −1)) /(−2 e^(−((iπ)/4)) (−2i)))  = (e^x /(4i))  e^(−i)  e^((iπ)/4)  =(e^x /(4i)) e^((−1+(π/4))i)   ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (1/(4i)){ e^(−i)  { e^(−x) e^(−((iπ)/4))  +e^x e^((iπ)/4) }}  =(π/2)  e^(−i)   {e^(−x) ( (1/( (√2))) −(i/( (√2)))) +e^x ((1/( (√2))) +(i/( (√2))))}  =(π/2) e^(−i) {  (1/( (√2)))(e^x  +e^(−x) )+(i/( (√2)))(e^x  −e^(−x) )}  =(π/(2(√2)))(cos1 −isin1){ 2ch(x)+2ish(x)}  =(π/( (√2)))(cos(1)−isin(1))(ch(x)+ish(x))  =(π/( (√2))){cos(1)ch(x) +icos(1)sh(x)−isin(1)ch(x) +sin(1)sh(x)} ⇒  f(x) =(π/(2(√2))){cos(1)sh(x) −sin(1)ch(x)}   2) we have f^′ (x)=∫_0 ^∞  ((t^2 cos(xt^2 −1))/(t^4  +1))dt =g(x) ⇒  g(x) =(π/(2(√2))){cos(1)ch(x)−sin(1)sh(x)} .
1)wehave2f(x)=+sin(xt21)t4+1dt=Im(+ei(xt21)t4+1dt)letφ(z)=ei(xz21)z4+1φ(z)=ei(xz21)(z2i)(z2+i)=ei(xz21)(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)sothepolesofφare+eiπ4and+eiπ4residustheoremgive+φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,eiπ4)=limzeiπ4(zeiπ4)φ(z)=ei(x(i)1)2eiπ4(2i)=exei4ieiπ4=ex4ie(1+π4)iRes(φ,eiπ4)=limzeiπ4(z+eiπ4)φ(z)=ei(xi1)2eiπ4(2i)=ex4ieieiπ4=ex4ie(1+π4)i+φ(z)dz=2iπ14i{ei{exeiπ4+exeiπ4}}=π2ei{ex(12i2)+ex(12+i2)}=π2ei{12(ex+ex)+i2(exex)}=π22(cos1isin1){2ch(x)+2ish(x)}=π2(cos(1)isin(1))(ch(x)+ish(x))=π2{cos(1)ch(x)+icos(1)sh(x)isin(1)ch(x)+sin(1)sh(x)}f(x)=π22{cos(1)sh(x)sin(1)ch(x)}2)wehavef(x)=0t2cos(xt21)t4+1dt=g(x)g(x)=π22{cos(1)ch(x)sin(1)sh(x)}.
Commented by maxmathsup by imad last updated on 05/Apr/19
3)   ∫_0 ^∞     ((sin(2t^2 −1))/(t^4  +1)) dt =f(2) =(π/(2(√2))){cos(1)sh(2)−sin(1)ch(2)}  ∫_0 ^∞    ((t^2  sin(3t^2 −1))/(t^4  +1)) dt =g(3) =(π/(2(√2))){cos(1)ch(3)−sin(1)sh(3)} .
3)0sin(2t21)t4+1dt=f(2)=π22{cos(1)sh(2)sin(1)ch(2)}0t2sin(3t21)t4+1dt=g(3)=π22{cos(1)ch(3)sin(1)sh(3)}.

Leave a Reply

Your email address will not be published. Required fields are marked *