let-f-x-0-sin-xt-2-1-t-4-1-dt-1-find-a-explicit-form-of-f-x-2-let-g-x-0-t-2-cos-xt-2-1-t-4-1-dt-find-a-explicit-form-of-g-x-3-calculate-0-sin- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 57237 by maxmathsup by imad last updated on 31/Mar/19 letf(x)=∫0+∞sin(xt2−1)t4+1dt1)findaexplicitformoff(x)2)letg(x)=∫0∞t2cos(xt2−1)t4+1dtfindaexplicitformofg(x)3)calculate∫0∞sin(2t2−1)t4+1dtand∫0∞t2cos(3t2−1)t4+1dt. Commented by maxmathsup by imad last updated on 05/Apr/19 1)wehave2f(x)=∫−∞+∞sin(xt2−1)t4+1dt=Im(∫−∞+∞ei(xt2−1)t4+1dt)letφ(z)=ei(xz2−1)z4+1⇒φ(z)=ei(xz2−1)(z2−i)(z2+i)=ei(xz2−1)(z−eiπ4)(z+eiπ4)(z−e−iπ4)(z+e−iπ4)sothepolesofφare+−eiπ4and+−e−iπ4residustheoremgive∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,−e−iπ4)}Res(φ,eiπ4)=limz→eiπ4(z−eiπ4)φ(z)=ei(x(i)−1)2eiπ4(2i)=e−xe−i4ieiπ4=e−x4ie−(1+π4)iRes(φ,−e−iπ4)=limz→−e−iπ4(z+e−iπ4)φ(z)=ei(−xi−1)−2e−iπ4(−2i)=ex4ie−ieiπ4=ex4ie(−1+π4)i⇒∫−∞+∞φ(z)dz=2iπ14i{e−i{e−xe−iπ4+exeiπ4}}=π2e−i{e−x(12−i2)+ex(12+i2)}=π2e−i{12(ex+e−x)+i2(ex−e−x)}=π22(cos1−isin1){2ch(x)+2ish(x)}=π2(cos(1)−isin(1))(ch(x)+ish(x))=π2{cos(1)ch(x)+icos(1)sh(x)−isin(1)ch(x)+sin(1)sh(x)}⇒f(x)=π22{cos(1)sh(x)−sin(1)ch(x)}2)wehavef′(x)=∫0∞t2cos(xt2−1)t4+1dt=g(x)⇒g(x)=π22{cos(1)ch(x)−sin(1)sh(x)}. Commented by maxmathsup by imad last updated on 05/Apr/19 3)∫0∞sin(2t2−1)t4+1dt=f(2)=π22{cos(1)sh(2)−sin(1)ch(2)}∫0∞t2sin(3t2−1)t4+1dt=g(3)=π22{cos(1)ch(3)−sin(1)sh(3)}. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-188310Next Next post: x-1-x-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.