Menu Close

let-f-x-0-t-2-x-6-t-6-dt-with-x-gt-0-1-calculate-f-x-2-calculate-g-x-0-t-2-x-6-t-6-2-dt-3-find-values-of-integrals-0-t-2-t-6-8-dt-




Question Number 62220 by maxmathsup by imad last updated on 17/Jun/19
let f(x) =∫_0 ^∞        (t^2 /(x^6   +t^6 )) dt      with x>0  1) calculate f(x)  2) calculate g(x) =∫_0 ^∞     (t^2 /((x^6  +t^6 )^2 ))dt  3) find values of integrals  ∫_0 ^∞      (t^2 /(t^6  +8))dt    and ∫_0 ^∞    (t^2 /((t^6 +8)^2 ))dt .
letf(x)=0t2x6+t6dtwithx>01)calculatef(x)2)calculateg(x)=0t2(x6+t6)2dt3)findvaluesofintegrals0t2t6+8dtand0t2(t6+8)2dt.
Commented by maxmathsup by imad last updated on 19/Jun/19
1) f(x)=∫_0 ^∞  (t^2 /(x^6  +t^6 ))dt  changement t =xu give    f(x) =∫_0 ^∞  ((x^2 u^2 )/(x^6  +x^6 u^6 )) xdu =(1/x^3 ) ∫_0 ^∞   (u^2 /(1+u^6 ))du   changement  u^6  =α give u=α^(1/6)   x^3 f(x) = ∫_0 ^∞    (((α^(1/6) )^2 )/(1+α)) (1/6) α^((1/6)−1)  du = ∫_0 ^∞    (α^((1/3)+(1/6)−1) /(1+α)) du =(1/6)∫_0 ^∞    (α^((1/2)−1) /(1+α)) dα  =(1/6) (π/(sin((π/2)))) =(π/6) ⇒f(x) =(π/(6x^3 ))     (x>0)  2) we have f^′ (x) = −∫_0 ^∞    ((6x^5 t^2 )/((x^6  +t^6 )^2 )) dt =−6x^5  ∫_0 ^∞    (t^2 /((x^6  +t^6 )^2 )) dt =−6x^5  g(x) ⇒  g(x) =−((f^′ (x))/(6x^5 ))         but f(x) =(π/6) x^(−3)  ⇒f^′ (x) =(π/6) (−3)x^(−4)   =−(π/(2x^4 )) ⇒  g(x) =−(1/(6x^5 ))(−(π/(2x^4 ))) =(π/(12x^9 ))  3)∫_0 ^∞   (t^2 /(t^6  +8)) dt = ∫_0 ^∞   (t^2 /(((√2))^6  +t^6 )) f((√2)) =(π/(6((√2))^3 )) =(π/(12(√2))) =((π(√2))/(24))  ∫_0 ^∞   (t^2 /((t^6  +8)^2 )) dt =g((√2)) = (π/(12((√2))^9 )) =(π/(12.(√2)(2^4 ))) =(π/(12×16×(√2))) =...
1)f(x)=0t2x6+t6dtchangementt=xugivef(x)=0x2u2x6+x6u6xdu=1x30u21+u6duchangementu6=αgiveu=α16x3f(x)=0(α16)21+α16α161du=0α13+1611+αdu=160α1211+αdα=16πsin(π2)=π6f(x)=π6x3(x>0)2)wehavef(x)=06x5t2(x6+t6)2dt=6x50t2(x6+t6)2dt=6x5g(x)g(x)=f(x)6x5butf(x)=π6x3f(x)=π6(3)x4=π2x4g(x)=16x5(π2x4)=π12x93)0t2t6+8dt=0t2(2)6+t6f(2)=π6(2)3=π122=π2240t2(t6+8)2dt=g(2)=π12(2)9=π12.2(24)=π12×16×2=
Commented by maxmathsup by imad last updated on 19/Jun/19
i have used the result ∫_0 ^∞  (t^(a−1) /(1+t))dt =(π/(sin(πa))) if 0<a<1
ihaveusedtheresult0ta11+tdt=πsin(πa)if0<a<1

Leave a Reply

Your email address will not be published. Required fields are marked *