Question Number 62220 by maxmathsup by imad last updated on 17/Jun/19
$${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{{t}^{\mathrm{2}} }{{x}^{\mathrm{6}} \:\:+{t}^{\mathrm{6}} }\:{dt}\:\:\:\:\:\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}^{\mathrm{2}} }{\left({x}^{\mathrm{6}} \:+{t}^{\mathrm{6}} \right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{values}\:{of}\:{integrals}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{6}} \:+\mathrm{8}}{dt}\:\:\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{6}} +\mathrm{8}\right)^{\mathrm{2}} }{dt}\:. \\ $$
Commented by maxmathsup by imad last updated on 19/Jun/19
$$\left.\mathrm{1}\right)\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{\mathrm{2}} }{{x}^{\mathrm{6}} \:+{t}^{\mathrm{6}} }{dt}\:\:{changement}\:{t}\:={xu}\:{give}\:\: \\ $$$${f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{2}} {u}^{\mathrm{2}} }{{x}^{\mathrm{6}} \:+{x}^{\mathrm{6}} {u}^{\mathrm{6}} }\:{xdu}\:=\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{6}} }{du}\:\:\:{changement}\:\:{u}^{\mathrm{6}} \:=\alpha\:{give}\:{u}=\alpha^{\frac{\mathrm{1}}{\mathrm{6}}} \\ $$$${x}^{\mathrm{3}} {f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\left(\alpha^{\frac{\mathrm{1}}{\mathrm{6}}} \right)^{\mathrm{2}} }{\mathrm{1}+\alpha}\:\frac{\mathrm{1}}{\mathrm{6}}\:\alpha^{\frac{\mathrm{1}}{\mathrm{6}}−\mathrm{1}} \:{du}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\alpha^{\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{6}}−\mathrm{1}} }{\mathrm{1}+\alpha}\:{du}\:=\frac{\mathrm{1}}{\mathrm{6}}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\alpha^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} }{\mathrm{1}+\alpha}\:{d}\alpha \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\:\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{2}}\right)}\:=\frac{\pi}{\mathrm{6}}\:\Rightarrow{f}\left({x}\right)\:=\frac{\pi}{\mathrm{6}{x}^{\mathrm{3}} }\:\:\:\:\:\left({x}>\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{f}^{'} \left({x}\right)\:=\:−\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{6}{x}^{\mathrm{5}} {t}^{\mathrm{2}} }{\left({x}^{\mathrm{6}} \:+{t}^{\mathrm{6}} \right)^{\mathrm{2}} }\:{dt}\:=−\mathrm{6}{x}^{\mathrm{5}} \:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\mathrm{2}} }{\left({x}^{\mathrm{6}} \:+{t}^{\mathrm{6}} \right)^{\mathrm{2}} }\:{dt}\:=−\mathrm{6}{x}^{\mathrm{5}} \:{g}\left({x}\right)\:\Rightarrow \\ $$$${g}\left({x}\right)\:=−\frac{{f}^{'} \left({x}\right)}{\mathrm{6}{x}^{\mathrm{5}} }\:\:\:\:\:\:\:\:\:{but}\:{f}\left({x}\right)\:=\frac{\pi}{\mathrm{6}}\:{x}^{−\mathrm{3}} \:\Rightarrow{f}^{'} \left({x}\right)\:=\frac{\pi}{\mathrm{6}}\:\left(−\mathrm{3}\right){x}^{−\mathrm{4}} \:\:=−\frac{\pi}{\mathrm{2}{x}^{\mathrm{4}} }\:\Rightarrow \\ $$$${g}\left({x}\right)\:=−\frac{\mathrm{1}}{\mathrm{6}{x}^{\mathrm{5}} }\left(−\frac{\pi}{\mathrm{2}{x}^{\mathrm{4}} }\right)\:=\frac{\pi}{\mathrm{12}{x}^{\mathrm{9}} } \\ $$$$\left.\mathrm{3}\right)\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{6}} \:+\mathrm{8}}\:{dt}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\mathrm{2}} }{\left(\sqrt{\mathrm{2}}\right)^{\mathrm{6}} \:+{t}^{\mathrm{6}} }\:{f}\left(\sqrt{\mathrm{2}}\right)\:=\frac{\pi}{\mathrm{6}\left(\sqrt{\mathrm{2}}\right)^{\mathrm{3}} }\:=\frac{\pi}{\mathrm{12}\sqrt{\mathrm{2}}}\:=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{24}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{6}} \:+\mathrm{8}\right)^{\mathrm{2}} }\:{dt}\:={g}\left(\sqrt{\mathrm{2}}\right)\:=\:\frac{\pi}{\mathrm{12}\left(\sqrt{\mathrm{2}}\right)^{\mathrm{9}} }\:=\frac{\pi}{\mathrm{12}.\sqrt{\mathrm{2}}\left(\mathrm{2}^{\mathrm{4}} \right)}\:=\frac{\pi}{\mathrm{12}×\mathrm{16}×\sqrt{\mathrm{2}}}\:=… \\ $$
Commented by maxmathsup by imad last updated on 19/Jun/19
$${i}\:{have}\:{used}\:{the}\:{result}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:=\frac{\pi}{{sin}\left(\pi{a}\right)}\:{if}\:\mathrm{0}<{a}<\mathrm{1} \\ $$