Menu Close

let-f-x-0-t-a-1-x-t-dt-with-x-gt-0-and-0-lt-a-lt-1-1-calculate-f-x-2-calculate-g-x-0-t-a-1-x-t-2-dt-3-find-the-value-of-0-t-a-1-1-t-2-dt-




Question Number 63510 by turbo msup by abdo last updated on 05/Jul/19
let f(x)=∫_0 ^∞  (t^(a−1) /(x+t)) dt with x>0  and 0<a<1  1)calculate f(x)  2)calculate g(x)=∫_0 ^∞  (t^(a−1) /((x+t)^2 ))dt  3)find the value of∫_0 ^∞  (t^(a−1) /((1+t)^2 ))dt
letf(x)=0ta1x+tdtwithx>0and0<a<11)calculatef(x)2)calculateg(x)=0ta1(x+t)2dt3)findthevalueof0ta1(1+t)2dt
Commented by mathmax by abdo last updated on 06/Jul/19
1) changement t=xu give f(x)=∫_0 ^∞   (((xu)^(a−1) )/(x+xu)) xdu =x^(a−1)  ∫_0 ^∞  (u^(a−1) /(1+u))du  =x^(a−1)  (π/(sin(πa))) ⇒f(x)=((π x^(a−1) )/(sin(πa)))  2)we have f^′ (x) =∫_0 ^∞  (∂/∂x)((t^(a−1) /(x+t)))dt =−∫_0 ^∞    (t^(a−1) /((x+t)^2 )) dt =−g(x) ⇒  g(x)=−f^′ (x)   but  f(x) =(π/(sin(πa))) e^((a−1)ln(x))  ⇒  f^′ (x) =((π(a−1))/(xsin(πa))) x^(a−1)   =((π(a−1) x^(a−2) )/(sin(πa))) ⇒g(x)=((π(1−a))/(sin(πa))) x^(a−2)   3) ∫_0 ^∞   (t^(a−1) /((1+t)^2 )) dt =g(1) =((π(1−a))/(sin(πa)))              (0<a<1) .  remark   we have for all integr n  f^((n)) (x) =∫_0 ^∞    (((−1)^n n! t^(a−1) )/((x+t)^(n+1) )) dt ⇒ ∫_0 ^∞      (t^(a−1) /((x+t)^(n+1) ))dt =(((−1)^n )/(n!)) f^((n)) (x)   we have f(x) =(π/(sin(πa))) e^((a−1)ln(x))   let find  (e^(λln(x)) )^((n))   (e^(λlnx) )^((1))  = (λ/x) e^(λln(x))  ⇒(e^(λlnx) )^((2))  =(λ^2 /x^2 ) e^(λln(x))  ⇒(e^(λln(x)) )^((n))  =(λ^n /x^n ) e^(λlnx)  ⇒  f^((n)) (x) =(π/(sin(πa))) (((a−1)^n )/x^n ) x^(a−1)  =((π (a−1)^n )/(sin(πa))) x^(a−n−1)  ⇒  ∫_0 ^∞     (t^(a−1) /((x+t)^(n+1) ))dt =((π(1−a)^n )/(n! sin(πa))) x^(a−n−1)   special case  x=1 ⇒∫_0 ^∞      (t^(a−1) /((1+t)^(n+1) ))dt =((π(1−a)^n )/(n!sin(πa))) .
1)changementt=xugivef(x)=0(xu)a1x+xuxdu=xa10ua11+udu=xa1πsin(πa)f(x)=πxa1sin(πa)2)wehavef(x)=0x(ta1x+t)dt=0ta1(x+t)2dt=g(x)g(x)=f(x)butf(x)=πsin(πa)e(a1)ln(x)f(x)=π(a1)xsin(πa)xa1=π(a1)xa2sin(πa)g(x)=π(1a)sin(πa)xa23)0ta1(1+t)2dt=g(1)=π(1a)sin(πa)(0<a<1).remarkwehaveforallintegrnf(n)(x)=0(1)nn!ta1(x+t)n+1dt0ta1(x+t)n+1dt=(1)nn!f(n)(x)wehavef(x)=πsin(πa)e(a1)ln(x)letfind(eλln(x))(n)(eλlnx)(1)=λxeλln(x)(eλlnx)(2)=λ2x2eλln(x)(eλln(x))(n)=λnxneλlnxf(n)(x)=πsin(πa)(a1)nxnxa1=π(a1)nsin(πa)xan10ta1(x+t)n+1dt=π(1a)nn!sin(πa)xan1specialcasex=10ta1(1+t)n+1dt=π(1a)nn!sin(πa).

Leave a Reply

Your email address will not be published. Required fields are marked *