let-f-x-0-t-a-1-x-t-dt-with-x-gt-0-and-0-lt-a-lt-1-1-calculate-f-x-2-calculate-g-x-0-t-a-1-x-t-2-dt-3-find-the-value-of-0-t-a-1-1-t-2-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 63510 by turbo msup by abdo last updated on 05/Jul/19 letf(x)=∫0∞ta−1x+tdtwithx>0and0<a<11)calculatef(x)2)calculateg(x)=∫0∞ta−1(x+t)2dt3)findthevalueof∫0∞ta−1(1+t)2dt Commented by mathmax by abdo last updated on 06/Jul/19 1)changementt=xugivef(x)=∫0∞(xu)a−1x+xuxdu=xa−1∫0∞ua−11+udu=xa−1πsin(πa)⇒f(x)=πxa−1sin(πa)2)wehavef′(x)=∫0∞∂∂x(ta−1x+t)dt=−∫0∞ta−1(x+t)2dt=−g(x)⇒g(x)=−f′(x)butf(x)=πsin(πa)e(a−1)ln(x)⇒f′(x)=π(a−1)xsin(πa)xa−1=π(a−1)xa−2sin(πa)⇒g(x)=π(1−a)sin(πa)xa−23)∫0∞ta−1(1+t)2dt=g(1)=π(1−a)sin(πa)(0<a<1).remarkwehaveforallintegrnf(n)(x)=∫0∞(−1)nn!ta−1(x+t)n+1dt⇒∫0∞ta−1(x+t)n+1dt=(−1)nn!f(n)(x)wehavef(x)=πsin(πa)e(a−1)ln(x)letfind(eλln(x))(n)(eλlnx)(1)=λxeλln(x)⇒(eλlnx)(2)=λ2x2eλln(x)⇒(eλln(x))(n)=λnxneλlnx⇒f(n)(x)=πsin(πa)(a−1)nxnxa−1=π(a−1)nsin(πa)xa−n−1⇒∫0∞ta−1(x+t)n+1dt=π(1−a)nn!sin(πa)xa−n−1specialcasex=1⇒∫0∞ta−1(1+t)n+1dt=π(1−a)nn!sin(πa). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-1-1-1-x-2-1-x-2-dx-Next Next post: What-is-the-Laplace-transform-of-f-t-4t-2-5sin-3t- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.