Menu Close

let-f-x-0-t-a-1-x-t-n-dt-with-0-lt-a-lt-1-and-x-gt-0-and-n-2-1-determine-a-explicit-form-of-f-x-2-calculate-g-x-0-t-a-1-x-t-n-2-dt-3-find-f-k-x-at-for




Question Number 63664 by mathmax by abdo last updated on 07/Jul/19
let f(x)=∫_0 ^∞   (t^(a−1) /(x+t^n )) dt   with 0<a<1  and  x>0 and n≥2  1) determine a explicit form of f(x)  2) calculate g(x) =∫_0 ^∞   (t^(a−1) /((x+t^n )^2 )) dt  3) find f^((k)) (x) at form of integrals  4) calculate ∫_0 ^∞   (t^(a−1) /(9+t^2 )) dt    and   ∫_0 ^∞    (t^(a−1) /((9+t^2 )^2 ))  5) calculate  U_n =∫_0 ^∞    (t^((1/n)−1) /(2^n  +t^n )) dt  and study the convergence of Σ U_n
letf(x)=0ta1x+tndtwith0<a<1andx>0andn21)determineaexplicitformoff(x)2)calculateg(x)=0ta1(x+tn)2dt3)findf(k)(x)atformofintegrals4)calculate0ta19+t2dtand0ta1(9+t2)25)calculateUn=0t1n12n+tndtandstudytheconvergenceofΣUn
Commented by mathmax by abdo last updated on 09/Jul/19
1)we have f(x)=∫_0 ^∞  (t^(a−1) /(x +t^n ))dt  changement t =^n (√x)u give  f(x) =∫_0 ^∞    (((^n (√x)u)^(a−1) )/(x +xu^n ))^n (√x)du  =(x^(((a−1)/n)+(1/n)) /x) ∫_0 ^∞    (u^(a−1) /(1+u^n )) du =x^((a/n)−1)  ∫_0 ^∞   (u^(a−1) /(1+u^n ))  =_(u=α^(1/n) )     x^((a/n)−1)  ∫_0 ^∞    (α^((a−1)/n) /(1+α)) (1/n) α^((1/n)−1)  dα  = x^((a/n)−1)  ∫_0 ^∞      (α^(((a−1)/n)+(1/n)−1) /(1+α)) dα = x^((a/n)−1)   ∫_0 ^∞    (α^((a/n)−1) /(1+α)) dα ⇒  f(x)=x^((a/n)−1)   (π/(sin(((πa)/n))))
1)wehavef(x)=0ta1x+tndtchangementt=nxugivef(x)=0(nxu)a1x+xunnxdu=xa1n+1nx0ua11+undu=xan10ua11+un=u=α1nxan10αa1n1+α1nα1n1dα=xan10αa1n+1n11+αdα=xan10αan11+αdαf(x)=xan1πsin(πan)
Commented by mathmax by abdo last updated on 09/Jul/19
2) we have by derivation f^′ (x) =∫_0 ^∞ (∂/∂x)((t^(a−1) /(x+t^n )))dt  =−∫_0 ^∞    (t^(a−1) /((x+t^n )^2 ))dt =−g(x) ⇒g(x)=−f^′ (x)  f(x)=(π/(sin(((πa)/n)))) x^((a/n)−1)  ⇒f^′ (x) =((π((a/n)−1))/(sin(((πa)/n)))) x^((a/n)−2)  ⇒  g(x)=∫_0 ^∞   (t^(a−1) /((x+t^n )^2 ))dt =((π(1−(a/n)))/(sin(((πa)/n)))) x^((a/n)−2)
2)wehavebyderivationf(x)=0x(ta1x+tn)dt=0ta1(x+tn)2dt=g(x)g(x)=f(x)f(x)=πsin(πan)xan1f(x)=π(an1)sin(πan)xan2g(x)=0ta1(x+tn)2dt=π(1an)sin(πan)xan2
Commented by mathmax by abdo last updated on 09/Jul/19
3) we have f(x)=∫_0 ^∞  (t^(a−1) /(x +t^n )) dt ⇒f^((k)) (x) =∫_0 ^∞  (∂^k /∂x^k )((t^(a−1) /(x+t^n )))dt  =∫_0 ^∞   (((−1)^k k!)/((x+t^n )^(k+1) )) t^(a−1)  dt   ⇒f^((k)) (x) =(−1)^k k! ∫_0 ^∞    (t^(a−1) /((x+t^n )^(k+1) ))dt
3)wehavef(x)=0ta1x+tndtf(k)(x)=0kxk(ta1x+tn)dt=0(1)kk!(x+tn)k+1ta1dtf(k)(x)=(1)kk!0ta1(x+tn)k+1dt
Commented by mathmax by abdo last updated on 09/Jul/19
4) we have proved that ∫_0 ^∞  (t^(a−1) /(x+t^n )) dt  =(π/(sin(((πa)/n)))) x^((a/n)−1)  and  ∫_0 ^∞    (t^(a−1) /((x+t^n )^2 ))dt =((π(1−(a/n)))/(sin(((πa)/n)))) x^((a/n)−2)   x=9 and n=2 ⇒∫_0 ^∞   (t^(a−1) /(9+t^2 ))dt =(π/(sin(((πa)/2))))×9^((a/2)−1)   ∫_0 ^∞    (t^(a−1) /((9+t^2 )^2 ))dt =((π(1−(a/2)))/(sin(((πa)/2))))×9^((a/2)−2)
4)wehaveprovedthat0ta1x+tndt=πsin(πan)xan1and0ta1(x+tn)2dt=π(1an)sin(πan)xan2x=9andn=20ta19+t2dt=πsin(πa2)×9a210ta1(9+t2)2dt=π(1a2)sin(πa2)×9a22
Commented by mathmax by abdo last updated on 09/Jul/19
5) we have ∫_0 ^∞   (t^(a−1) /(x+t^n ))dt =(π/(sin(((πa)/n)))) x^((a/n)−1)   a=(1/n)  and x =2^n  ⇒∫_0 ^∞   (t^((1/n)−1) /(2^n  +t^n ))dt = (π/(sin((π/n^2 ))))(2^n )^((1/n^2 )−1)   =(π/(sin((π/n^2 ))))×2^((1/n)−n)  =(π/(2^(n−(1/n))    sin((π/n^2 )))) .
5)wehave0ta1x+tndt=πsin(πan)xan1a=1nandx=2n0t1n12n+tndt=πsin(πn2)(2n)1n21=πsin(πn2)×21nn=π2n1nsin(πn2).
Commented by mathmax by abdo last updated on 09/Jul/19
⇒ U_n =(π/(2^(n−(1/n))  sin((π/n^2 ))))
Un=π2n1nsin(πn2)

Leave a Reply

Your email address will not be published. Required fields are marked *