Menu Close

let-f-x-0-te-t-2-arctan-xt-dt-1-find-a-simple-form-of-f-x-2-calculate-0-te-t-2-arctantdt-and-0-t-e-t-2-arctan-2t-dt-3-let-u-n-0-t-e-t-2-arctan-nt-dt-




Question Number 40984 by prof Abdo imad last updated on 30/Jul/18
let f(x) =∫_0 ^∞   te^(−t^2 )  arctan(xt)dt  1) find a simple form of f(x)  2) calculate ∫_0 ^∞  te^(−t^2 ) arctantdt and  ∫_0 ^∞   t e^(−t^2 )  arctan(2t)dt  3)let u_n =∫_0 ^∞   t e^(−t^2 ) arctan(nt)dt  find lim_(n→+∞) u_n   study the convergence of Σ u_n
letf(x)=0tet2arctan(xt)dt1)findasimpleformoff(x)2)calculate0tet2arctantdtand0tet2arctan(2t)dt3)letun=0tet2arctan(nt)dtfindlimn+unstudytheconvergenceofΣun
Commented by math khazana by abdo last updated on 02/Aug/18
1) by parts f(x)=[−(1/2)e^(−t^2 ) arctan(xt)]_(t=0) ^∞   −∫_0 ^∞  −(1/2) e^(−t^2 )   (x/(1+x^2 t^2 )) dt  =(x/2) ∫_0 ^∞   (e^(−t^2 ) /(x^2 t^2  +1)) dt =_(xt =u)     (x/2) ∫_0 ^∞    (e^(−(u^2 /x^2 )) /(1+u^2 )) (du/x)  =(1/2) ∫_0 ^∞   (e^(−(u^2 /x^2 )) /(1+u^2 )) du  =(1/4) ∫_(−∞) ^(+∞)    (e^(−(u^2 /x^2 )) /(1+u^2 )) du let  ϕ(z) = (e^(−(u^2 /x^2 )) /(1+u^2 ))  the poles of ϕ are i and −i   residus theorem give   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i) =2iπ (e^(1/x^2 ) /(2i)) =π e^(1/x^2 )  ⇒  f(x)=(π/4) e^(1/(x^2   ))       with x≠0  2) ∫_0 ^∞  t e^(−t^2 )  arctan(t)dt =f(1)= ((πe)/4)  3) we have u_n =f(n) = (π/4) e^(1/n^2 )  ⇒  lim_(n→+∞)   u_n =(π/4)  Σ_(n=1) ^∞  u_n  =(π/4) Σ_(n=1) ^∞   e^(1/n^2 )   but e^(1/n^2 )  ∼ 1+(1/n^2 ) ⇒  (π/4) Σ_(n=1) ^∞  e^(1/n^2 )  ∼(π/4)Σ_(n=1) ^∞ (1+(1/n^2 )) =+∞⇒  Σ u_n  diverges .
1)bypartsf(x)=[12et2arctan(xt)]t=0012et2x1+x2t2dt=x20et2x2t2+1dt=xt=ux20eu2x21+u2dux=120eu2x21+u2du=14+eu2x21+u2duletφ(z)=eu2x21+u2thepolesofφareiandiresidustheoremgive+φ(z)dz=2iπRes(φ,i)=2iπe1x22i=πe1x2f(x)=π4e1x2withx02)0tet2arctan(t)dt=f(1)=πe43)wehaveun=f(n)=π4e1n2limn+un=π4n=1un=π4n=1e1n2bute1n21+1n2π4n=1e1n2π4n=1(1+1n2)=+Σundiverges.

Leave a Reply

Your email address will not be published. Required fields are marked *