Menu Close

let-f-x-0-tsin-tx-1-t-4-dt-with-x-gt-0-1-find-a-explicit-form-of-f-x-2-find-the-value-of-0-tsin-2t-1-t-4-dt-




Question Number 53785 by maxmathsup by imad last updated on 25/Jan/19
let f(x)=∫_0 ^∞  ((tsin(tx))/(1+t^4 ))dt  with x>0  1) find a explicit form of f(x)  2) find the value of ∫_0 ^∞   ((tsin(2t))/(1+t^4 ))dt.
letf(x)=0tsin(tx)1+t4dtwithx>01)findaexplicitformoff(x)2)findthevalueof0tsin(2t)1+t4dt.
Commented by maxmathsup by imad last updated on 26/Jan/19
1) we have 2f(x)=∫_(−∞) ^(+∞)    ((t sin(tx))/(t^4  +1))dt=Im(∫_(−∞) ^(+∞)  ((t e^(itx) )/(t^4  +1))dt) let consider the complex function  ϕ(z) = ((z e^(ixz) )/(z^4  +1))  ⇒ϕ(z) =((z e^(ixz) )/((z^2 −i)(z^2  +i))) =((z e^(ixz) )/((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  the poles of ϕ are +^−  e^((iπ)/4)    and +^−  e^(−((iπ)/4))   ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ{ Res(ϕ , e^((iπ)/4) ) +Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ, e^((iπ)/4) ) = ((e^((iπ)/4)  e^(ix((1/( (√2)))+(i/( (√2))))) )/(2e^((iπ)/4) (2i))) =(1/(4i)) e^((ix)/( (√2)))   .e^(−(t/( (√2)))) =(e^(−(x/( (√2)))) /(4i)) e^((ix)/( (√2)))   Res(ϕ,−e^(−((iπ)/4)) ) =((−e^(−((iπ)/4))   e^(ix(−(1/( (√2)))+(i/( (√2))))) )/((−2ie^(−((iπ)/4)) )(−2i))) =−(1/(4i)) e^(−(x/( (√2)))) e^(−((ix)/( (√2))))     ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ e^(−(x/( (√2)))) { (1/(4i)) e^((ix)/( (√2)))   −(1/(4i)) e^(−((ix)/2)) }  =(π/2) e^(−(x/( (√2)))) { 2i sin((x/( (√2))))} =iπ e^(−(x/( (√2))))  sin((x/( (√2)))) ⇒2f(x)=π e^(−(x/( (√(2 )))))   sin((x/( (√2)))) ⇒  ★f(x) =(π/2) e^(−(x/( (√2))))  sin((x/( (√2))))★  2) this integral is a spacial case   ∫_0 ^(+∞)  ((tsin(2t))/(1+t^4 )) dt =f(2) = (π/2) e^(−(√2))  sin((√2)) .
1)wehave2f(x)=+tsin(tx)t4+1dt=Im(+teitxt4+1dt)letconsiderthecomplexfunctionφ(z)=zeixzz4+1φ(z)=zeixz(z2i)(z2+i)=zeixz(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)thepolesofφare+eiπ4and+eiπ4+φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,eiπ4)=eiπ4eix(12+i2)2eiπ4(2i)=14ieix2.et2=ex24ieix2Res(φ,eiπ4)=eiπ4eix(12+i2)(2ieiπ4)(2i)=14iex2eix2+φ(z)dz=2iπex2{14ieix214ieix2}=π2ex2{2isin(x2)}=iπex2sin(x2)2f(x)=πex2sin(x2)f(x)=π2ex2sin(x2)2)thisintegralisaspacialcase0+tsin(2t)1+t4dt=f(2)=π2e2sin(2).

Leave a Reply

Your email address will not be published. Required fields are marked *