Menu Close

let-f-x-0-tsin-xt-x-2-t-2-2-dt-x-gt-0-calculate-f-x-




Question Number 131050 by mathmax by abdo last updated on 31/Jan/21
let f(x)=∫_0 ^∞   ((tsin(xt))/((x^2  +t^2 )^2 ))dt   (x>0)  calculate f^′ (x)
letf(x)=0tsin(xt)(x2+t2)2dt(x>0)calculatef(x)
Answered by mathmax by abdo last updated on 02/Feb/21
changement t=xz give f(x)=∫_0 ^∞   ((xzsin(x^2 z))/(x^4 (z^2  +1)^2 ))xdz  =(1/x^2 )∫_0 ^∞  ((zsin(x^2 z))/((z^2  +1)^2 ))dz ⇒f(x)=(1/(2x^2 ))∫_(−∞) ^(+∞)  ((zsin(x^2 z))/((z^2  +1)^2 ))dz =(1/(2x^2 ))Im(∫_(−∞) ^(+∞)  ((ze^(ix^2 z) )/((z^2  +1)^2 ))dz)  ⇒ϕ(z)=((z e^(ix^2 z) )/((z^2  +1)^2 )) ⇒ϕ(z)=((ze^(ix^2 z) )/((z−i)^2 (z+i)^2 )) residus theorem give  ∫_R ϕ(z)dz =2iπRes(ϕ,i)  Res(ϕ,i)=lim_(z→i)  (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)   { ((ze^(ix^2 z) )/((z+i)^2 ))}^((1))  =lim_(z→i)  (((e^(ix^2 z) +ix^2 z e^(ix^2 z) )(z+i)^2 −2(z+i)ze^(ix^2 z) )/((z+i)^4 ))  =lim_(z→i)    ((e^(ix^2 z) (1+ix^2 z)(z+i)−2ze^(ix^2 z) )/((z+i)^3 ))  =((e^(−x^2 ) (1−x^2 )(2i)−2i e^(−x^2 ) )/((2i)^3 )) =((2i{ (1−x^2 )e^(−x^2 ) −e^(−x^2 ) })/(−8i))  =−(1/4)(−x^2 )e^(−x^2 )  =(x^2 /4)e^(−x^2 )  ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ×(x^2 /4)e^(−x^2 )   =((iπx^2 )/2)e^(−x^2 )  ⇒f(x)=(1/(2x^2 )).(π/2)x^2  e^(−x^2 )  =(π/4)e^(−x^2 )  ⇒  f^′ (x)=(π/4)(−2x)e^(−x^2 )  =−((πx)/2)e^(−x^2 )
changementt=xzgivef(x)=0xzsin(x2z)x4(z2+1)2xdz=1x20zsin(x2z)(z2+1)2dzf(x)=12x2+zsin(x2z)(z2+1)2dz=12x2Im(+zeix2z(z2+1)2dz)φ(z)=zeix2z(z2+1)2φ(z)=zeix2z(zi)2(z+i)2residustheoremgiveRφ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{zeix2z(z+i)2}(1)=limzi(eix2z+ix2zeix2z)(z+i)22(z+i)zeix2z(z+i)4=limzieix2z(1+ix2z)(z+i)2zeix2z(z+i)3=ex2(1x2)(2i)2iex2(2i)3=2i{(1x2)ex2ex2}8i=14(x2)ex2=x24ex2+φ(z)dz=2iπ×x24ex2=iπx22ex2f(x)=12x2.π2x2ex2=π4ex2f(x)=π4(2x)ex2=πx2ex2

Leave a Reply

Your email address will not be published. Required fields are marked *