Menu Close

let-F-x-0-x-1-sint-2-cost-dt-1-find-a-explicite-form-of-f-x-2-calculate-0-pi-1-sint-2-cost-dt-




Question Number 57417 by Abdo msup. last updated on 03/Apr/19
let F(x) =∫_0 ^x   ((1+sint)/(2+cost))dt  1) find a explicite form of f(x)  2) calculate ∫_0 ^π   ((1+sint)/(2+cost))dt
letF(x)=0x1+sint2+costdt1)findaexpliciteformoff(x)2)calculate0π1+sint2+costdt
Commented by Abdo msup. last updated on 05/Apr/19
1)changement tan((t/2))=u give  F(x)=∫_0 ^(tan((x/2)))    ((1+((2u)/(1+u^2 )))/(2+((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  =∫_0 ^(tan((x/2)))      ((1+u^2  +2u)/(2+2u^2  +1−u^2 )) ((2du)/(1+u^2 ))  =2 ∫_0 ^(tan((x/2)))    ((u^2  +2u +1)/((u^2  +1)(u^2  +3))) du  let decompose  F(u) = ((u^2  +2u +1)/((u^2  +1)(u^2  +3))) ⇒F(u) =((au +b)/(u^2  +1)) +((cu +d)/(u^2  +3))  ⇒(u^2  +3)(au+b) +(u^2  +1)(cu +d)=u^2  +2u +1 ⇒  au^3  +bu^2  +3au +3b +cu^3  +du^2  +cu +d =u^2  +2u +1 ⇒  (a+c)u^3  +(b+d)u^2  +(3a+c)u +3b +d =u^2  +2u +1⇒  a+c=0,b+d =1,3a+c =2 ,3b +d =1 ⇒  c=−a ⇒3a−a =2 ⇒a =1  wehave d=1−b ⇒  3b +1−b =1 ⇒b=0 ⇒d=1 ⇒  F(u)=(u/(u^2  +1)) +((−u +1)/(u^2  +3)) ⇒∫ F(u)du  =(1/2)ln(u^2  +1) −(1/2)ln(u^2  +3) +arctan(u) +c ⇒  F(x)=2 [(1/2)ln(u^2  +1)−(1/2)ln(u^2  +3) +arctan(u)]_0 ^(tan((x/2)))   =2 {(1/2)ln(1+tan^2 ((x/2)))−(1/2)ln(3+tan^2 ((x/2)))+(x/2)}  F(x)=x +ln(1+tan^2 ((x/2)))−ln(3+tan^2 ((x/2)))
1)changementtan(t2)=ugiveF(x)=0tan(x2)1+2u1+u22+1u21+u22du1+u2=0tan(x2)1+u2+2u2+2u2+1u22du1+u2=20tan(x2)u2+2u+1(u2+1)(u2+3)duletdecomposeF(u)=u2+2u+1(u2+1)(u2+3)F(u)=au+bu2+1+cu+du2+3(u2+3)(au+b)+(u2+1)(cu+d)=u2+2u+1au3+bu2+3au+3b+cu3+du2+cu+d=u2+2u+1(a+c)u3+(b+d)u2+(3a+c)u+3b+d=u2+2u+1a+c=0,b+d=1,3a+c=2,3b+d=1c=a3aa=2a=1wehaved=1b3b+1b=1b=0d=1F(u)=uu2+1+u+1u2+3F(u)du=12ln(u2+1)12ln(u2+3)+arctan(u)+cF(x)=2[12ln(u2+1)12ln(u2+3)+arctan(u)]0tan(x2)=2{12ln(1+tan2(x2))12ln(3+tan2(x2))+x2}F(x)=x+ln(1+tan2(x2))ln(3+tan2(x2))
Commented by Abdo msup. last updated on 05/Apr/19
2)we have ∫_0 ^π   ((1+sint)/(2+cost))dt =_(tan((x/2)))    ∫_0 ^∞   ((1+((2u)/(1+u^2 )))/(2+((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  =2 ∫_0 ^∞   ((u^2  +2u +1)/((u^2  +1)(u^2  +3))) du  =[ln(u^2  +1)−ln(u^2  +3) +2 arctan(u)]_0 ^(+∞)   =[ln(((u^2  +1)/(u^2  +3))) +2 arctan(u)]_0 ^(+∞) =π−ln((1/3))  =π +ln(3) .
2)wehave0π1+sint2+costdt=tan(x2)01+2u1+u22+1u21+u22du1+u2=20u2+2u+1(u2+1)(u2+3)du=[ln(u2+1)ln(u2+3)+2arctan(u)]0+=[ln(u2+1u2+3)+2arctan(u)]0+=πln(13)=π+ln(3).

Leave a Reply

Your email address will not be published. Required fields are marked *