Menu Close

let-f-x-0-x-dt-1-t-4-1-find-a-explicit-form-of-f-x-2-calculate-0-dt-1-t-4-




Question Number 43623 by math khazana by abdo last updated on 12/Sep/18
let f(x)=∫_0 ^x  (dt/(1+t^4 ))  1) find  a explicit form of f(x)  2) calculate ∫_0 ^∞   (dt/(1+t^4 ))
letf(x)=0xdt1+t41)findaexplicitformoff(x)2)calculate0dt1+t4
Commented by maxmathsup by imad last updated on 13/Sep/18
let decompose F(t)=(1/(t^4 +1)) we have F(t)=(1/((t^2  +1)^2 −2t^2 ))  =(1/((t^2  +1 −(√2)t)(t^2 +1+(√2)t))) =((at +b)/((t^2 −(√2)t +1))) +((ct +d)/(t^2 +(√2)t +1))  F(−t)=F(t) ⇒((−at +b)/(t^2  +(√2)t +1)) +((−ct +d)/(t^2 −(√2)t +1)) =F(t) ⇒c=−a  and b=d ⇒  F(x)=((at +b)/(t^2 −(√2)t +1)) +((−at +b)/(t^2  +(√2)t +1))  F(0) =1 =2b ⇒b=0  ⇒F(t)=((at)/(t^2 −(√2)t +1)) −((at)/(t^2  +(√2)t +1))  F(1) =(1/2) = (a/(2−(√2))) −(a/(2+(√2))) =(((2+(√2)−2+(√2))/2))a =(√2)a ⇒a=(1/(2(√2))) ⇒  F(x)= (1/(2(√2))){ (t/(t^2 −(√2)t +1)) −(t/(t^2  +(√2)t +1))}⇒  ∫ (dt/(1+t^4 )) =(1/(4(√2))){  ∫   ((2t−(√2)+(√2))/(t^2 −(√2)t +1))dt  −∫  ((2t +(√2)−(√2))/(t^2  +(√2)t +1))dt}  ⇒4(√2) ∫ (dt/(1+t^4 )) =ln∣t^2 −(√2)t +1∣−ln∣t^2  +(√2)t+1∣ +(√2)  ∫(dt/(t^2 −(√2)t +1)) −(√2)∫(dt/(t^2  +(√2)t +1))  but ∫  (dt/(t^2 −(√2)t +1)) = ∫  (dt/(t^2 −(2/( (√2)))t +(1/2) +(1/2))) =∫ (dt/((t−(1/( (√2))))^2  +(1/2)))  =_(t−(1/( (√2))) =(u/( (√2))))      ∫       (2/(1+u^2 )) (du/( (√2))) =(√2)arctan(u)=(√2)arctan(t(√2)−1) also  ∫     (dt/(t^2 +(√2)t +1)) = (√2)arctan(t(√2)+1) ⇒  4(√2)∫  (dt/(1+t^4 )) =ln∣((t^2 −(√2)t+1)/(t^2  +(√2)t +1))∣ +2 arctan(t(√2)−1)−2 arctan(t(√2)+1) +c ⇒  ∫    (dt/(1+t^4 )) =(1/(4(√2)))ln∣((t^2 −(√2)t +1)/(t^2 +(√2)t +1))∣ +(1/(2(√2))){ arctan(t(√2)−1)−arctan(t(√2)+1)} +c⇒  f(x)= ∫_0 ^x  (dt/(1+t^4 )) =[(1/(4(√2)))ln∣((t^2 −(√2)t +1)/(t^2  +(√2)t +1))∣_0 ^x  +(1/(2(√2)))[arctan(t(√2)−1)−arctan(t(√2)+1)]_0 ^x   f(x)=(1/(4(√2)))ln∣((x^2 −(√2)x +1)/(x^2  +(√2)x +1))∣ +(1/(2(√2))){ arctan(x(√2)−1)−arctan(x(√2)+1) +(π/2)}
letdecomposeF(t)=1t4+1wehaveF(t)=1(t2+1)22t2=1(t2+12t)(t2+1+2t)=at+b(t22t+1)+ct+dt2+2t+1F(t)=F(t)at+bt2+2t+1+ct+dt22t+1=F(t)c=aandb=dF(x)=at+bt22t+1+at+bt2+2t+1F(0)=1=2bb=0F(t)=att22t+1att2+2t+1F(1)=12=a22a2+2=(2+22+22)a=2aa=122F(x)=122{tt22t+1tt2+2t+1}dt1+t4=142{2t2+2t22t+1dt2t+22t2+2t+1dt}42dt1+t4=lnt22t+1lnt2+2t+1+2dtt22t+12dtt2+2t+1butdtt22t+1=dtt222t+12+12=dt(t12)2+12=t12=u221+u2du2=2arctan(u)=2arctan(t21)alsodtt2+2t+1=2arctan(t2+1)42dt1+t4=lnt22t+1t2+2t+1+2arctan(t21)2arctan(t2+1)+cdt1+t4=142lnt22t+1t2+2t+1+122{arctan(t21)arctan(t2+1)}+cf(x)=0xdt1+t4=[142lnt22t+1t2+2t+10x+122[arctan(t21)arctan(t2+1)]0xf(x)=142lnx22x+1x2+2x+1+122{arctan(x21)arctan(x2+1)+π2}
Commented by maxmathsup by imad last updated on 13/Sep/18
error at line 9  4(√2) ∫   (dt/(1+t^4 )) =ln∣t^2 −(√2)t +1∣−ln∣t^2  +(√2)t +1∣+(√2)∫  (dt/(t^2 −(√2)t +1)) +(√2)∫  (dt/(t^2  +(√2)t +1))  ⇒  f(x) = (1/(4(√2)))ln∣((x^2  −(√2)x +1)/(x^2  +(√2)x +1))∣ +(1/(2(√2))){ arctan(x(√2)−1) +arctan(x(√2)+1) }.
erroratline942dt1+t4=lnt22t+1lnt2+2t+1+2dtt22t+1+2dtt2+2t+1f(x)=142lnx22x+1x2+2x+1+122{arctan(x21)+arctan(x2+1)}.
Commented by maxmathsup by imad last updated on 13/Sep/18
2) we have ∫_0 ^∞    (dt/(1+t^4 )) =lim_(x→+∞) f(x)=(1/(2(√2))){(π/2) +(π/2)} = (π/(2(√2))) .
2)wehave0dt1+t4=limx+f(x)=122{π2+π2}=π22.
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Sep/18
∫(dt/(1+t^4 ))  ∫((1/t^2 )/(t^2 +(1/t^2 )))dt  (1/2)∫(((1+(1/t^2 ))−(1−(1/t^2 )))/(t^2 +(1/t^2 )))dt  (1/2)∫((d(t−(1/t)))/((t−(1/t))^2 +2))−(1/2)∫((d(t+(1/t)))/((t+(1/t))^2 −2))  I_1 =(1/2)∫((d(t−(1/t)))/((t−(1/t))^2 +2))  =(1/2)×(1/( (√2) ))tan^(−1) (((t−(1/t))/( (√2))))+c  I_2 =(1/2)∫((d(t+(1/t)))/((t+(1/t))^2 −((√2) )^2 ))  formula∫(dy/(y^2 −a^2 ))=(1/(2a))∫(((y+a)−(y−a))/((y+a)y−a)))dy  (1/(2a))[∫(dy/(y−a))−∫(dy/(y+a))]  (1/(2a))ln∣((y−a)/(y+a))∣+c_2   I_2 =(1/2)×(1/(2(√2)))ln∣((t+(1/t)−(√2))/(t+(1/t)+(√2)))∣  so ans is I_1 −I_2   (1/(2(√2)))tan^(−1) (((t−(1/t))/( (√2))))−(1/(4(√2)))ln∣((t+(1/t)−(√2))/(t+(1/t)+(√2)))∣+c  so  ∫_0 ^x (dt/(1+t^4 ))  [(1/(2(√2)))tan^(−1) (((x−(1/x))/( (√2))))−(1/(4(√2)))ln∣((x+(1/x)−(√2))/(x+(1/x)+(√2)))∣]−  [(1/(2(√2)))tan^(−1) (−∞)−0  (1/(2(√2)))(−(Π/2))  ans is[ (1/(2(√2)))tan^(−1) (((x−(1/x))/( (√2))))−(1/(4(√2)))ln∣((x+(1/x)−(√2))/(x+(1/x)+(√2)))∣+(Π/(4(√2)))
dt1+t41t2t2+1t2dt12(1+1t2)(11t2)t2+1t2dt12d(t1t)(t1t)2+212d(t+1t)(t+1t)22I1=12d(t1t)(t1t)2+2=12×12tan1(t1t2)+cI2=12d(t+1t)(t+1t)2(2)2formuladyy2a2=12a(y+a)(ya)(y+a)ya)dy12a[dyyadyy+a]12alnyay+a+c2I2=12×122lnt+1t2t+1t+2soansisI1I2122tan1(t1t2)142lnt+1t2t+1t+2+cso0xdt1+t4[122tan1(x1x2)142lnx+1x2x+1x+2][122tan1()0122(Π2)ansis[122tan1(x1x2)142lnx+1x2x+1x+2+Π42

Leave a Reply

Your email address will not be published. Required fields are marked *