Menu Close

let-f-x-0-x-sinx-a-2-x-4-dx-with-a-gt-0-1-find-a-explicit-form-of-f-a-2-find-g-a-0-xsinx-a-2-x-4-2-dx-3-find-the-value-of-0-x-sinx-x-4-1-d




Question Number 44466 by maxmathsup by imad last updated on 29/Sep/18
let f(x) = ∫_0 ^∞     ((x sinx)/(a^2  +x^4 ))dx  with a>0  1) find a explicit form of f(a)  2) find  g(a) = ∫_0 ^∞    ((xsinx)/((a^2  +x^4 )^2 ))dx  3)find the value of  ∫_0 ^∞   ((x sinx)/(x^4  +1))dx  4) find the value of ∫_0 ^∞    ((xsinx)/((x^4  +1)^2 ))dx .
letf(x)=0xsinxa2+x4dxwitha>01)findaexplicitformoff(a)2)findg(a)=0xsinx(a2+x4)2dx3)findthevalueof0xsinxx4+1dx4)findthevalueof0xsinx(x4+1)2dx.
Commented by abdo.msup.com last updated on 29/Sep/18
f(a)= ∫_0 ^∞  ((xsinx)/(a^2  +x^4 ))dx  with a>0.
f(a)=0xsinxa2+x4dxwitha>0.
Commented by maxmathsup by imad last updated on 03/Oct/18
1) we have f(a) =∫_0 ^∞  ((xsin(x))/(a^2  +x^4 ))dx  ⇒2f(a) =∫_(−∞) ^(+∞)   ((xsin(x))/(a^2  +x^4 ))dx  =Im( ∫_(−∞) ^(+∞)    ((x e^(ix) )/(a^2  +x^4 ))dx)  changement x =(√a)t give  I=∫_(−∞) ^(+∞)     ((x e^(ix) )/(a^2  +x^4 ))dx = ∫_(−∞) ^(+∞)   (((√a)t e^(i(√a)t) )/(a^2  +a^2 t^4 )) (√a)dt =(1/a) ∫_(−∞) ^(+∞)   ((t e^(i(√a)t) )/(t^4  +1))dt ⇒  a I = ∫_(−∞) ^(+∞)    ((t e^(i(√a)t) )/(t^4  +1))dt let  consider the complex function  ϕ(z) =((z e^(i(√a)z) )/(z^4  +1)) ⇒ϕ(z) =((z e^(i(√a)z) )/((z^2 −i)(z^2  +i))) =((z e^(i(√a)z) )/((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^((iπ)/4) )))  so the poles of ϕ are +^− e^((iπ)/4)  and +^−  e^(−((iπ)/4))   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,e^((iπ)/4) ) +Res(ϕ,−e^(−((iπ)/4)) )} but  Res(ϕ, e^((iπ)/4) ) =lim_(z→e^((iπ)/4) )   (z−e^((iπ)/4) )ϕ(z) =((e^((iπ)/4)   e^(i(√a)e^((iπ)/4) ) )/(2 e^((iπ)/4) (2i))) =(1/(4i)) e^(i(√a)((1/( (√2)))+(i/( (√2)))))   =(1/(4i))  e^(−((√a)/( (√2) )))  e^(i((√a)/( (√2))))   Res(ϕ, −e^(−((iπ)/4)) ) =lim_(z→−e^(−((iπ)/4)) )  (z+e^(−((iπ)/4)) )ϕ(z)  = ((e^(−((iπ)/4))  e^(i(√a) e^(−((iπ)/4)) ) )/((−2i)(−2e^(−((iπ)/4)) ))) =(1/(4i)) e^(i(√a){(1/( (√2)))−(i/( (√2)))})  =(1/(4i)) e^((√a)/( (√2)))  e^(i((√a)/( (√(2   )))))   ⇒ ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ (1/(4i)) e^(−((√a)/( (√2))))  e^(i((√a)/( (√2))))    +(1/(4i)) e^((√a)/( (√2)))   e^(i((√a)/( (√2)))) }  =(π/2) e^(i((√a)/( (√2))))  { e^((√a)/( (√2)))  +e^(−((√a)/( (√2)))) } =πch(((√a)/( (√2)))) {cos(((√a)/( (√2))))+i sin(((√a)/( (√2))))} ⇒  I =(π/a)ch(((√a)/( (√2)))){cos(((√a)/( (√2))))+isin(((√a)/( (√2))))} ⇒2f(a) =(π/a)ch(((√a)/( (√2))))sin(((√a)/( (√2)))) ⇒  f(a) =(π/(2a)) ch(((√a)/( (√2))))sin(((√a)/( (√2))))  with a>0 .
1)wehavef(a)=0xsin(x)a2+x4dx2f(a)=+xsin(x)a2+x4dx=Im(+xeixa2+x4dx)changementx=atgiveI=+xeixa2+x4dx=+ateiata2+a2t4adt=1a+teiatt4+1dtaI=+teiatt4+1dtletconsiderthecomplexfunctionφ(z)=zeiazz4+1φ(z)=zeiaz(z2i)(z2+i)=zeiaz(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)sothepolesofφare+eiπ4and+eiπ4+φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}butRes(φ,eiπ4)=limzeiπ4(zeiπ4)φ(z)=eiπ4eiaeiπ42eiπ4(2i)=14ieia(12+i2)=14iea2eia2Res(φ,eiπ4)=limzeiπ4(z+eiπ4)φ(z)=eiπ4eiaeiπ4(2i)(2eiπ4)=14ieia{12i2}=14iea2eia2+φ(z)dz=2iπ{14iea2eia2+14iea2eia2}=π2eia2{ea2+ea2}=πch(a2){cos(a2)+isin(a2)}I=πach(a2){cos(a2)+isin(a2)}2f(a)=πach(a2)sin(a2)f(a)=π2ach(a2)sin(a2)witha>0.
Commented by maxmathsup by imad last updated on 04/Oct/18
2) we have f(a) =∫_0 ^∞   ((x sin(x))/(a^2  +x^4 )) dx ⇒f^′ (a)=−∫_0 ^∞    ((2ax sinx)/((a^2  +x^4 )^2 ))dx ⇒  ∫_0 ^∞   ((x sinx)/((a^2  +x^4 )^2 )) =−(1/(2a)) f^′ (a)   and f(a) is known.
2)wehavef(a)=0xsin(x)a2+x4dxf(a)=02axsinx(a2+x4)2dx0xsinx(a2+x4)2=12af(a)andf(a)isknown.
Commented by maxmathsup by imad last updated on 04/Oct/18
3) ∫_0 ^∞   ((x sin(x))/(1+x^4 ))dx =f(1) =(π/2)ch((1/( (√2))))sin((1/( (√2)))).
3)0xsin(x)1+x4dx=f(1)=π2ch(12)sin(12).

Leave a Reply

Your email address will not be published. Required fields are marked *