Question Number 44466 by maxmathsup by imad last updated on 29/Sep/18
$${let}\:{f}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{x}\:{sinx}}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }{dx}\:\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{g}\left({a}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{xsinx}}{\left({a}^{\mathrm{2}} \:+{x}^{\mathrm{4}} \right)^{\mathrm{2}} }{dx} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{sinx}}{{x}^{\mathrm{4}} \:+\mathrm{1}}{dx} \\ $$$$\left.\mathrm{4}\right)\:{find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{xsinx}}{\left({x}^{\mathrm{4}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:. \\ $$$$ \\ $$
Commented by abdo.msup.com last updated on 29/Sep/18
$${f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\frac{{xsinx}}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }{dx}\:\:{with}\:{a}>\mathrm{0}. \\ $$
Commented by maxmathsup by imad last updated on 03/Oct/18
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{xsin}\left({x}\right)}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }{dx}\:\:\Rightarrow\mathrm{2}{f}\left({a}\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{xsin}\left({x}\right)}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }{dx} \\ $$$$={Im}\left(\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{x}\:{e}^{{ix}} }{{a}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }{dx}\right)\:\:{changement}\:{x}\:=\sqrt{{a}}{t}\:{give} \\ $$$${I}=\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{x}\:{e}^{{ix}} }{{a}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }{dx}\:=\:\int_{−\infty} ^{+\infty} \:\:\frac{\sqrt{{a}}{t}\:{e}^{{i}\sqrt{{a}}{t}} }{{a}^{\mathrm{2}} \:+{a}^{\mathrm{2}} {t}^{\mathrm{4}} }\:\sqrt{{a}}{dt}\:=\frac{\mathrm{1}}{{a}}\:\int_{−\infty} ^{+\infty} \:\:\frac{{t}\:{e}^{{i}\sqrt{{a}}{t}} }{{t}^{\mathrm{4}} \:+\mathrm{1}}{dt}\:\Rightarrow \\ $$$${a}\:{I}\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{t}\:{e}^{{i}\sqrt{{a}}{t}} }{{t}^{\mathrm{4}} \:+\mathrm{1}}{dt}\:{let}\:\:{consider}\:{the}\:{complex}\:{function} \\ $$$$\varphi\left({z}\right)\:=\frac{{z}\:{e}^{{i}\sqrt{{a}}{z}} }{{z}^{\mathrm{4}} \:+\mathrm{1}}\:\Rightarrow\varphi\left({z}\right)\:=\frac{{z}\:{e}^{{i}\sqrt{{a}}{z}} }{\left({z}^{\mathrm{2}} −{i}\right)\left({z}^{\mathrm{2}} \:+{i}\right)}\:=\frac{{z}\:{e}^{{i}\sqrt{{a}}{z}} }{\left({z}−{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}+{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}+{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)} \\ $$$${so}\:{the}\:{poles}\:{of}\:\varphi\:{are}\:\overset{−} {+}{e}^{\frac{{i}\pi}{\mathrm{4}}} \:{and}\:\overset{−} {+}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:{Res}\left(\varphi,{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\:+{Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\right\}\:{but} \\ $$$${Res}\left(\varphi,\:{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\:={lim}_{{z}\rightarrow{e}^{\frac{{i}\pi}{\mathrm{4}}} } \:\:\left({z}−{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\varphi\left({z}\right)\:=\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} \:\:{e}^{{i}\sqrt{{a}}{e}^{\frac{{i}\pi}{\mathrm{4}}} } }{\mathrm{2}\:{e}^{\frac{{i}\pi}{\mathrm{4}}} \left(\mathrm{2}{i}\right)}\:=\frac{\mathrm{1}}{\mathrm{4}{i}}\:{e}^{{i}\sqrt{{a}}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}{i}}\:\:{e}^{−\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}\:}} \:{e}^{{i}\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}} \\ $$$${Res}\left(\varphi,\:−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\:={lim}_{{z}\rightarrow−{e}^{−\frac{{i}\pi}{\mathrm{4}}} } \:\left({z}+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\varphi\left({z}\right) \\ $$$$=\:\frac{{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:{e}^{{i}\sqrt{{a}}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} } }{\left(−\mathrm{2}{i}\right)\left(−\mathrm{2}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)}\:=\frac{\mathrm{1}}{\mathrm{4}{i}}\:{e}^{{i}\sqrt{{a}}\left\{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{{i}}{\:\sqrt{\mathrm{2}}}\right\}} \:=\frac{\mathrm{1}}{\mathrm{4}{i}}\:{e}^{\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}} \:{e}^{{i}\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}\:\:\:}}} \\ $$$$\Rightarrow\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:\frac{\mathrm{1}}{\mathrm{4}{i}}\:{e}^{−\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}} \:{e}^{{i}\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}} \:\:\:+\frac{\mathrm{1}}{\mathrm{4}{i}}\:{e}^{\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}} \:\:{e}^{{i}\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}} \right\} \\ $$$$=\frac{\pi}{\mathrm{2}}\:{e}^{{i}\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}} \:\left\{\:{e}^{\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}} \:+{e}^{−\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}} \right\}\:=\pi{ch}\left(\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}\right)\:\left\{{cos}\left(\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}\right)+{i}\:{sin}\left(\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}\right)\right\}\:\Rightarrow \\ $$$${I}\:=\frac{\pi}{{a}}{ch}\left(\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}\right)\left\{{cos}\left(\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}\right)+{isin}\left(\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}\right)\right\}\:\Rightarrow\mathrm{2}{f}\left({a}\right)\:=\frac{\pi}{{a}}{ch}\left(\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}\right){sin}\left(\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}\right)\:\Rightarrow \\ $$$${f}\left({a}\right)\:=\frac{\pi}{\mathrm{2}{a}}\:{ch}\left(\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}\right){sin}\left(\frac{\sqrt{{a}}}{\:\sqrt{\mathrm{2}}}\right)\:\:{with}\:{a}>\mathrm{0}\:. \\ $$
Commented by maxmathsup by imad last updated on 04/Oct/18
$$\left.\mathrm{2}\right)\:{we}\:{have}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{sin}\left({x}\right)}{{a}^{\mathrm{2}} \:+{x}^{\mathrm{4}} }\:{dx}\:\Rightarrow{f}^{'} \left({a}\right)=−\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{ax}\:{sinx}}{\left({a}^{\mathrm{2}} \:+{x}^{\mathrm{4}} \right)^{\mathrm{2}} }{dx}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{sinx}}{\left({a}^{\mathrm{2}} \:+{x}^{\mathrm{4}} \right)^{\mathrm{2}} }\:=−\frac{\mathrm{1}}{\mathrm{2}{a}}\:{f}^{'} \left({a}\right)\:\:\:{and}\:{f}\left({a}\right)\:{is}\:{known}. \\ $$
Commented by maxmathsup by imad last updated on 04/Oct/18
$$\left.\mathrm{3}\right)\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{sin}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx}\:={f}\left(\mathrm{1}\right)\:=\frac{\pi}{\mathrm{2}}{ch}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right){sin}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right). \\ $$