Question Number 39039 by maxmathsup by imad last updated on 01/Jul/18
$${let}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{\mathrm{1}+\mid{sinx}\mid}\:\:\:\left(\mathrm{2}\pi\:{periodic}\:{even}\right) \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie}\:. \\ $$
Commented by abdo mathsup 649 cc last updated on 05/Jul/18
$${f}\left({x}\right)=\:\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} \:{cos}\left({nx}\right)\:\:{with} \\ $$$${a}_{{n}} =\:\frac{\mathrm{2}}{{T}}\:\int_{\left[{T}\right]} \:\:{f}\left({x}\right){cos}\left({nx}\right){dx} \\ $$$$=\frac{\mathrm{2}}{\mathrm{2}\pi}\:\int_{−\pi} ^{\pi} \:\:\frac{\mathrm{1}}{\mathrm{1}\:+\mid{sinx}\mid}\:{cos}\left({nx}\right){dx} \\ $$$$=\frac{\mathrm{2}}{\pi}\:\:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{cos}\left({nx}\right)}{\mathrm{1}+{sinx}}{dx}\:\Rightarrow\frac{\pi}{\mathrm{2}}{a}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{cos}\left({nx}\right)}{\mathrm{1}+{sinx}}{dx} \\ $$$${but}\:\int_{\mathrm{0}} ^{\pi} \:\frac{{cos}\left({nx}\right)}{\mathrm{1}+{sinx}}{dx}\:={Re}\left(\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{e}^{{inx}} }{\mathrm{1}+{sinx}}{dx}\right) \\ $$$${changement}\:{x}=\mathrm{2}{t}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{e}^{{inx}} }{\mathrm{1}+{sinx}}{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{\mathrm{2}{e}^{{i}\mathrm{2}{nt}} }{\mathrm{1}+{sin}\left(\mathrm{2}{t}\right)}{dt}\:{also} \\ $$$${chang}.\:{e}^{{it}} ={z}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{\mathrm{2}\:{e}^{{i}\mathrm{2}{nt}} }{\mathrm{1}+{sin}\left(\mathrm{2}{t}\right)}{dt}\:=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{\mathrm{2}\:{z}^{\mathrm{2}{n}} }{\mathrm{1}+\frac{{z}^{\mathrm{2}} −{z}^{−\mathrm{2}} }{\mathrm{2}{i}}}\:\frac{{dz}}{{iz}} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{\mathrm{4}{i}\:{z}^{\mathrm{2}{n}} }{{iz}\left(\:\mathrm{2}{i}+{z}^{\mathrm{2}} −{z}^{−\mathrm{2}} \right)}{dz} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{\mathrm{4}{z}^{\mathrm{2}{n}−\mathrm{1}} }{\mathrm{2}{i}\:+{z}^{\mathrm{2}} −\frac{\mathrm{1}}{{z}^{\mathrm{2}} }}\:{dz} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{\mathrm{4}\:{z}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{iz}^{\mathrm{2}} \:+{z}^{\mathrm{4}} \:−\mathrm{1}}{dz}\:\:{let} \\ $$$$\varphi\left({z}\right)\:=\:\frac{\mathrm{4}{z}^{\mathrm{2}{n}+\mathrm{1}} }{{z}^{\mathrm{4}} \:+\mathrm{2}{iz}^{\mathrm{2}} \:−\mathrm{1}} \\ $$$$\varphi\left({z}\right)\:=\:\frac{\mathrm{4}{z}^{\mathrm{2}{n}+\mathrm{1}} }{\left({z}^{\mathrm{2}} +{i}\right)^{\mathrm{2}} }\:=\:\frac{\mathrm{4}\:{z}^{\mathrm{2}{n}+\mathrm{1}} }{\left({z}−\sqrt{−{i}}\right)^{\mathrm{2}} \left(\mathrm{2}+\sqrt{−{i}}\right)^{\mathrm{2}} } \\ $$$$=\:\frac{\mathrm{4}\:{z}^{\mathrm{2}{n}+\mathrm{1}} }{\left({z}\:−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)^{\mathrm{2}} \left({z}\:+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)^{\mathrm{2}} }\:{so}\:\varphi\:{have}\:{a}\:{double} \\ $$$${poles}\:\overset{−\:} {+}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\varphi\left(\mathrm{2}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:{Res}\left(\varphi,{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\:+{Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\right\} \\ $$$$ \\ $$
Commented by abdo mathsup 649 cc last updated on 05/Jul/18
$${Res}\left(\varphi,\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)={lim}_{{z}\rightarrow\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} } \:\left\{\:\left({z}\:−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)^{\mathrm{2}} \varphi\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} } \:\:\:\left\{\:\:\frac{\mathrm{4}\:{z}^{\mathrm{2}{n}+\mathrm{1}} }{\left({z}+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{e}^{−\frac{{i}\pi}{\mathrm{4}}} } \:\mathrm{4}\:\frac{\left(\mathrm{2}{n}+\mathrm{1}\right){z}^{\mathrm{2}{n}} \left({z}\:+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)^{\mathrm{2}} \:−\mathrm{2}\left({z}+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right){z}^{\mathrm{2}{n}+\mathrm{1}} }{\left({z}\:+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)^{\mathrm{4}} } \\ $$$$={lim}_{{z}\rightarrow{e}^{−\frac{{i}\pi}{\mathrm{4}}} } \:\:\mathrm{4}\:\frac{\left(\mathrm{2}{n}+\mathrm{1}\right){z}^{\mathrm{2}{n}} \left({z}\:+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)−\mathrm{2}\:{z}^{\mathrm{2}{n}+\mathrm{1}} }{\left({z}\:+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)^{\mathrm{3}} } \\ $$$$=\mathrm{4}\frac{\left(\mathrm{2}{n}+\mathrm{1}\right)\:{e}^{−\frac{{in}\pi}{\mathrm{2}}} \:\left(\mathrm{2}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\:−\mathrm{2}\:{e}^{−{i}\frac{\left(\mathrm{2}{n}+\mathrm{1}\right)\pi}{\mathrm{4}}} }{\left(\mathrm{2}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)^{\mathrm{3}} } \\ $$$$=\mathrm{8}\frac{\left(\mathrm{2}{n}+\mathrm{1}\right)\:{e}^{−{i}\left(\frac{{n}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{4}}\right)\pi} \:\:−{e}^{−{i}\frac{\left(\mathrm{2}{n}+\mathrm{1}\right)\pi}{\mathrm{4}}} }{\mathrm{8}\:{e}^{−{i}\frac{\mathrm{3}\pi}{\mathrm{4}}} } \\ $$$$=\:\frac{\mathrm{2}{n}\:{e}^{−{i}\frac{\left(\mathrm{2}{n}+\mathrm{1}\right)\pi}{\mathrm{4}}} }{{e}^{−{i}\frac{\mathrm{3}\pi}{\mathrm{4}}} }\:=\mathrm{2}{n}\:\:{e}^{−{i}\left\{\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}\right\}\pi} \\ $$$$=\mathrm{2}{n}\:\:{e}^{−{i}\:\frac{\left({n}+\mathrm{2}\right)\pi}{\mathrm{2}}} \:\:=−\mathrm{2}{n}\:{e}^{−\frac{{in}\pi}{\mathrm{2}}} \\ $$$$=−\mathrm{2}{n}\left\{{cos}\left(\frac{{n}\pi}{\mathrm{2}}\right)−{i}\:{sin}\left(\frac{{n}\pi}{\mathrm{2}}\right)\right\} \\ $$$$ \\ $$