Menu Close

let-f-x-1-1-x-2-1-calculate-f-n-x-2-find-f-n-0-3-developp-f-x-at-integr-serie-




Question Number 33256 by prof Abdo imad last updated on 14/Apr/18
let f(x) = (1/(1+x^2 ))  1) calculate f^((n)) (x)  2) find f^((n)) (0)  3) developp f(x) at integr serie.
letf(x)=11+x21)calculatef(n)(x)2)findf(n)(0)3)developpf(x)atintegrserie.
Commented by prof Abdo imad last updated on 15/Apr/18
we have f(x)= (1/((x−i)(x+i))) = (1/(2i))((1/(x−i)) −(1/(x+i)))  ⇒ f^((n)) (x)= (1/(2i))(   (((−1)^n n!)/((x−i)^(n+1) )) −(((−1)^n n!)/((x+i)^(n+1) )))  = (((−1)^n n!)/(2i)) (  (((x+i)^(n+1)  −(x−i)^(n+1) )/((x^2  +1)^(n+1) )) ) ⇒  f^((n)) (0) = (((−1)^n n!)/(2i)) ( i^(n+1)  −(−i)^(n+1) )  ⇒ f^((2n)) (0)= (((2n)!)/(2i)) ( i^(2n+1)  −(−i)^(2n+1) )  = (((−1)^n  (2n)!)/(2i)) (2i) = (−1)^n  (2n)!  f^((2n+1)) (0) =0  3) f(x)=Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n = Σ_(n=0) ^∞   (−1)^n (((2n)!)/((2n)!)) x^(2n)   ⇒f(x) = Σ_(n=0) ^∞  (−1)^n  x^(2n)   and radius of convergenve  is R =1 .
wehavef(x)=1(xi)(x+i)=12i(1xi1x+i)f(n)(x)=12i((1)nn!(xi)n+1(1)nn!(x+i)n+1)=(1)nn!2i((x+i)n+1(xi)n+1(x2+1)n+1)f(n)(0)=(1)nn!2i(in+1(i)n+1)f(2n)(0)=(2n)!2i(i2n+1(i)2n+1)=(1)n(2n)!2i(2i)=(1)n(2n)!f(2n+1)(0)=03)f(x)=n=0f(n)(0)n!xn=n=0(1)n(2n)!(2n)!x2nf(x)=n=0(1)nx2nandradiusofconvergenveisR=1.

Leave a Reply

Your email address will not be published. Required fields are marked *