Menu Close

let-f-x-1-1-x-2-3-developp-f-at-integr-serie-




Question Number 98943 by mathmax by abdo last updated on 17/Jun/20
let f(x) =(1/((1+x^2 )^3 ))  developp f at integr serie
letf(x)=1(1+x2)3developpfatintegrserie
Answered by maths mind last updated on 17/Jun/20
f(x)=(1/((1+x^2 )))  f′(x)=((−2x)/((1+x^2 )^2 ))  f′′(x)=((−2)/((1+x^2 )^2 ))+((8x^2 )/((1+x^2 )^3 ))  f′′(x)=((f′(x))/x)+8x^2 .(1/((1+x^2 )^3 ))  f(x)=Σ(−1)^n x^(2n)   f′(x)=Σ_(n≥1) 2n(−1)^n x^(2n−1)   f′′(x)=Σ_(n≥1) .2n(2n−1)(−1)^n x^(2n−2)   (1/((1+x^2 )^3 ))=(1/(8x^2 )){Σ_(n≥0) 2(n+1)(2n+1)(−1)^(n+1) x^(2n) −Σ_(n≥0) (2n+2)(−1)^(n+1) x^(2n) }  =(1/2).Σ_(n≥1) (−1)^(n+1) (n^2 +n)x^(2n−2)   =(1/2)Σ_(n≥0) (−1)^n (n^2 +3n+2)x^(2n)
f(x)=1(1+x2)f(x)=2x(1+x2)2f(x)=2(1+x2)2+8x2(1+x2)3f(x)=f(x)x+8x2.1(1+x2)3f(x)=Σ(1)nx2nf(x)=n12n(1)nx2n1f(x)=n1.2n(2n1)(1)nx2n21(1+x2)3=18x2{n02(n+1)(2n+1)(1)n+1x2nn0(2n+2)(1)n+1x2n}=12.n1(1)n+1(n2+n)x2n2=12n0(1)n(n2+3n+2)x2n
Commented by mathmax by abdo last updated on 17/Jun/20
thanks sir.
thankssir.
Answered by mathmax by abdo last updated on 17/Jun/20
we have (1/(1+x^2 )) =Σ_(n=0) ^∞  (−1)^n  x^(2n)  by derivation we get  −((2x)/((1+x^2 )^2 )) =Σ_(n=1) ^∞  2n(−1)^n  x^(2n−1)  ⇒((−2)/((1+x^2 )^2 )) =Σ_(n=1) ^∞  2n(−1)^n  x^(2n−2)   ⇒2 ×((2(2x)(1+x^2 ))/((1+x^2 )^4 )) =Σ_(n=2) ^∞  2n(2n−2)(−1)^n  x^(2n−3)  ⇒  ((8x)/((1+x^2 )^3 )) =Σ_(n=2) ^∞  2n(2n−2)(−1)^n  x^(2n−3)  ⇒  (4/((1+x^2 )^3 )) =Σ_(n=2) ^∞  n(2n−2)(−1)^n  x^(2n−4)   =Σ_(n=0) ^∞  (n+2)(2n+2)(−1)^(n+2)  x^(2n)  =2 Σ_(n=0) ^∞  (n+1)(n+2)(−1)^n  x^(2n)  ⇒  (1/((1+x^2 )^3 )) =(1/2)Σ_(n=0) ^∞ (n^2  +3n+2)(−1)^n  x^(2n) .
wehave11+x2=n=0(1)nx2nbyderivationweget2x(1+x2)2=n=12n(1)nx2n12(1+x2)2=n=12n(1)nx2n22×2(2x)(1+x2)(1+x2)4=n=22n(2n2)(1)nx2n38x(1+x2)3=n=22n(2n2)(1)nx2n34(1+x2)3=n=2n(2n2)(1)nx2n4=n=0(n+2)(2n+2)(1)n+2x2n=2n=0(n+1)(n+2)(1)nx2n1(1+x2)3=12n=0(n2+3n+2)(1)nx2n.

Leave a Reply

Your email address will not be published. Required fields are marked *