Menu Close

let-f-x-1-1-x-2-calculate-f-n-x-




Question Number 30752 by abdo imad last updated on 25/Feb/18
let f(x)= (1/(1+x^2 ))  calculate f^((n)) (x).
letf(x)=11+x2calculatef(n)(x).
Commented by abdo imad last updated on 28/Feb/18
we have f(x)= (1/((x+i)(x−i)))=(1/(2i))( (1/(x−i)) −(1/(x+i))) ⇒  f^((n)) (x)= (1/(2i))( ((1/(x−i)))^((n)) −((1/(x+i)))^((n)) )  =(1/(2i))( (((−1)^n n!)/((x−i)^(n+1) )) −(((−1)^n n!)/((x+i)^(n+1) )))  =((n!(−1)^n )/(2i))( (((x+i)^(n+1)  −(x−i)^(n+1) )/((1+x^2 )^(n+1) ))) but  (x+i)^(n+1)  −(x−i)^(n+1) = Σ_(k=0) ^(n+1)   C_(n+1) ^k  i^k  x^(n+1−k)   −Σ_(k=0) ^(n+1)  (−i)^k  x^(n+1−k) =Σ_(k=0) ^(n+1)  C_(n+1) ^k ( i^k  −(−i)^k )x^(n+1−k)   =Σ_(p=0) ^([(n/2)])   C_(n+1) ^(2p+1)  (2i) x^(n+1−2p−1)  ⇒  f^((n)) (x)=n! (−1)^n   ((Σ_(p=0) ^([(n/2)])   C_(n+1) ^(2p+1)   x^(n−2p) )/((1+x^2 )^(n+1) )) . also wecan give  f^((n)) at form of arctan....
wehavef(x)=1(x+i)(xi)=12i(1xi1x+i)f(n)(x)=12i((1xi)(n)(1x+i)(n))=12i((1)nn!(xi)n+1(1)nn!(x+i)n+1)=n!(1)n2i((x+i)n+1(xi)n+1(1+x2)n+1)but(x+i)n+1(xi)n+1=k=0n+1Cn+1kikxn+1kk=0n+1(i)kxn+1k=k=0n+1Cn+1k(ik(i)k)xn+1k=p=0[n2]Cn+12p+1(2i)xn+12p1f(n)(x)=n!(1)np=0[n2]Cn+12p+1xn2p(1+x2)n+1.alsowecangivef(n)atformofarctan.

Leave a Reply

Your email address will not be published. Required fields are marked *