Menu Close

let-f-x-1-1-x-2-finf-f-n-x-




Question Number 104919 by mathmax by abdo last updated on 24/Jul/20
let f(x) =(1/( (√(1−x^2 ))))  finf f^((n)) (x)
letf(x)=11x2finff(n)(x)
Commented by malwaan last updated on 25/Jul/20
can you post the steps please  thank you sir shikari
canyoupostthestepspleasethankyousirshikari
Commented by Dwaipayan Shikari last updated on 24/Jul/20
((1.3.5.7...(2n−1))/2^n ).((2^n x^n )/((1−x^2 )^(n+(1/2)) ))=((1.3.5.7..(2n−1))/((1−x^2 )^(n+(1/2)) )).x^n
1.3.5.7(2n1)2n.2nxn(1x2)n+12=1.3.5.7..(2n1)(1x2)n+12.xn
Commented by Dwaipayan Shikari last updated on 25/Jul/20
f^  ′(x)=(−1)(−(1/2))((2x)/((1−x^2 )^(3/2) ))  f^(′′) (x)=(−1)(1/2)(−(3/2))((2x.2x)/((1−x^2 )^(5/2) ))  So  f^n (x)=(1/2).(3/2).(5/2)....n((2^n .x^n )/((1−x^2 )^(n+(1/2)) ))=(1.3.5....(2n−1))(x^n /((1−x^2 )^(n+(1/2)) ))
Prime causes double exponent: use braces to clarifyf(x)=(1)12(32)2x.2x(1x2)52Sofn(x)=12.32.52.n2n.xn(1x2)n+12=(1.3.5.(2n1))xn(1x2)n+12

Leave a Reply

Your email address will not be published. Required fields are marked *