Menu Close

let-f-x-1-1-x-2-x-1-calculate-1-3-f-x-dx-2-determine-f-1-x-3-find-f-1-x-dx-




Question Number 45043 by maxmathsup by imad last updated on 07/Oct/18
let f(x)=((1+(√(1+x^2 )))/x)  1) calculate  ∫_1 ^3 f(x)dx  2) determine f^(−1) (x)  3) find ∫ f^(−1) (x)dx  .
letf(x)=1+1+x2x1)calculate13f(x)dx2)determinef1(x)3)findf1(x)dx.
Answered by MJS last updated on 08/Oct/18
∫((1+(√(x^2 +1)))/x)dx=       [t=(√(x^2 +1)) → dx=((√(x^2 +1))/x)dt]  =∫(t/(t−1))dt=       [u=t−1 → dt=du]  =∫((u+1)/u)du=u+ln u=t−1+ln(t−1)=  =(√(x^2 +1))−1+ln∣(√(x^2 +1))−1∣=  =ln∣1−(√(x^2 +1))∣+(√(x^2 +1))+C  (1) ∫_1 ^3 f(x)dx=ln((√(10))+2(√5)−(√2)−1) +((√5)−1)(√2)≈3.40060
1+x2+1xdx=[t=x2+1dx=x2+1xdt]=tt1dt=[u=t1dt=du]=u+1udu=u+lnu=t1+ln(t1)==x2+11+lnx2+11∣==ln1x2+1+x2+1+C(1)31f(x)dx=ln(10+2521)+(51)23.40060
Commented by maxmathsup by imad last updated on 08/Oct/18
thank you sir MJS.
thankyousirMJS.
Answered by MJS last updated on 08/Oct/18
(2)  f(x) is defined for x≠0  range is R\[−1; 1]  solving x=((1+(√(y^2 +1)))/y) gives y=((2x)/(x^2 −1)) but this  is defined for x∈R\{−1; 1} especially for x∈]−1; 1[  ⇒ f^(−1) (x)=((2x)/(x^2 −1)) with x∈R\[−1; 1]
(2)f(x)isdefinedforx0rangeisR[1;1]solvingx=1+y2+1ygivesy=2xx21butthisisdefinedforxR{1;1}especiallyforx]1;1[f1(x)=2xx21withxR[1;1]
Answered by MJS last updated on 08/Oct/18
(3)  ∫((2x)/(x^2 −1))dx=       [t=x^2 −1 → dx=(dt/(2x))]  =∫(dt/t)=ln t =ln ∣x^2 −1∣+C
(3)2xx21dx=[t=x21dx=dt2x]=dtt=lnt=lnx21+C

Leave a Reply

Your email address will not be published. Required fields are marked *