Question Number 35987 by abdo mathsup 649 cc last updated on 26/May/18

Commented by prof Abdo imad last updated on 27/May/18
![we have f(x)= (1/((x+1)(x^2 −x+1))) let decompose f inside C[x] roots of x^2 −x +1 Δ=1−4=−3=(i(√3))^2 ⇒x_1 =((1 +i(√3))/2) x_2 =((1−(√3))/2) or j =−(1/2) +i((√3)/2) ⇒x_2 =−j and x_1 =−j^− ⇒f(x)=(1/((x+1)(x+j)(x+j^− ))) =(a/(x+1)) +(b/(x+j)) +(c/(x+j^− )) a =lim_(x→−1) (x+1)f(x)= (1/3) b = lim_(x→−j) (x+j)f(x) = (1/((−j+1)(−j+j^− ))) = (1/((j−1)(j−j^− ))) =(1/( (√3)(−(3/2)+i((√3)/2)))) = (2/(3( −(√3) +i))) = ((2( −(√3)−i))/(3(3 +1))) = ((−(√3)−i)/6) c =lim_(x→−j^− ) (x+j^− )f(x) = (1/((−j^− +1)(j−j^− ))) = (1/( (√3)( ((1+i(√3))/2) +1))) = (1/( (√3)( (3/2) +i((√3)/2)))) = (2/(3((√3) +i))) =((2((√3)−i))/(3(4))) = (((√3)−i)/6) ⇒ f(x) = (1/(3(x+1))) −(((√3)+i)/(6(x+j))) +(((√3)−i)/(6(x+j^− ))) ⇒ f^((n)) (x) = (1/3) (((−1)^n n!)/((x+1)^(n+1) )) −(((√3)+i)/6) (((−1)^n n!)/((x+j)^(n+1) )) + (((√3)−i)/6) (((−1)^n n!)/((x+j^− )^(n+1) ))](https://www.tinkutara.com/question/Q36037.png)
Commented by prof Abdo imad last updated on 27/May/18

Commented by prof Abdo imad last updated on 27/May/18

Commented by abdo.msup.com last updated on 27/May/18
