Menu Close

let-f-x-1-1-x-3-1-calculate-f-n-x-2-developp-f-at-integr-serie-




Question Number 35987 by abdo mathsup 649 cc last updated on 26/May/18
let f(x) = (1/(1+x^3 ))  1) calculate f^((n)) (x)  2) developp f at integr serie.
letf(x)=11+x31)calculatef(n)(x)2)developpfatintegrserie.
Commented by prof Abdo imad last updated on 27/May/18
we have f(x)= (1/((x+1)(x^2  −x+1))) let decompose  f inside C[x] roots of x^2  −x +1  Δ=1−4=−3=(i(√3))^2  ⇒x_1  =((1 +i(√3))/2)  x_2  =((1−(√3))/2) or j =−(1/2) +i((√3)/2) ⇒x_2  =−j and  x_1  =−j^−   ⇒f(x)=(1/((x+1)(x+j)(x+j^− ))) =(a/(x+1)) +(b/(x+j))  +(c/(x+j^− ))  a =lim_(x→−1) (x+1)f(x)= (1/3)  b = lim_(x→−j) (x+j)f(x) = (1/((−j+1)(−j+j^− )))  = (1/((j−1)(j−j^− ))) =(1/( (√3)(−(3/2)+i((√3)/2))))   = (2/(3( −(√3) +i))) = ((2( −(√3)−i))/(3(3 +1))) = ((−(√3)−i)/6)  c =lim_(x→−j^−  )  (x+j^− )f(x) = (1/((−j^−  +1)(j−j^− )))  = (1/( (√3)( ((1+i(√3))/2) +1))) =  (1/( (√3)( (3/2) +i((√3)/2))))  = (2/(3((√3) +i))) =((2((√3)−i))/(3(4))) = (((√3)−i)/6) ⇒  f(x) =  (1/(3(x+1)))   −(((√3)+i)/(6(x+j))) +(((√3)−i)/(6(x+j^− ))) ⇒  f^((n)) (x) = (1/3) (((−1)^n n!)/((x+1)^(n+1) )) −(((√3)+i)/6)  (((−1)^n n!)/((x+j)^(n+1) ))  + (((√3)−i)/6)  (((−1)^n n!)/((x+j^− )^(n+1) ))
wehavef(x)=1(x+1)(x2x+1)letdecomposefinsideC[x]rootsofx2x+1Δ=14=3=(i3)2x1=1+i32x2=132orj=12+i32x2=jandx1=jf(x)=1(x+1)(x+j)(x+j)=ax+1+bx+j+cx+ja=limx1(x+1)f(x)=13b=limxj(x+j)f(x)=1(j+1)(j+j)=1(j1)(jj)=13(32+i32)=23(3+i)=2(3i)3(3+1)=3i6c=limxj(x+j)f(x)=1(j+1)(jj)=13(1+i32+1)=13(32+i32)=23(3+i)=2(3i)3(4)=3i6f(x)=13(x+1)3+i6(x+j)+3i6(x+j)f(n)(x)=13(1)nn!(x+1)n+13+i6(1)nn!(x+j)n+1+3i6(1)nn!(x+j)n+1
Commented by prof Abdo imad last updated on 27/May/18
f^n (x) = (((−1)^n n!)/(3(x+1)^(n+1) ))  + (((−1)^n n!)/6){  (((√3)−i)/((x+j^− )^(n+1) ))  −(((√3)+i)/((x+j)^(n+1) ))}  f^((n)) (x) = (((−1)^n n!)/(3(x+1)^(n+1) )) +(((−1)^n n!)/6){ ((((√3)−i)/((x+j^− )^(n+1) )))  −conj( (((√3)−i)/((x+j^− )^(n+1) )))  = (((−1)^n n!)/(3(x+1)^(n+1) ))   +(((−1)^n n!)/3) Im( (((√3)−i)/((x +j^− )^(n+1) )))
fn(x)=(1)nn!3(x+1)n+1+(1)nn!6{3i(x+j)n+13+i(x+j)n+1}f(n)(x)=(1)nn!3(x+1)n+1+(1)nn!6{(3i(x+j)n+1)conj(3i(x+j)n+1)=(1)nn!3(x+1)n+1+(1)nn!3Im(3i(x+j)n+1)
Commented by prof Abdo imad last updated on 27/May/18
2) we have f(x) = Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n   but   f^((n)) (0) = (((−1)^n n!)/3)  −(((√3)+i)/6)  (((−1)^n n!)/j^(n+1) )  +(((√3)−i)/6) (((−1)^n n!)/j^−^(n+1)  )  =(((−1)^n n!)/3)  + (((−1)^n n!)/6){   (((√3)−i)/j^−^(n+1)  )  −(((√3)+i)/j^(n+1) )}  =(((−1)^n n!)/3) +(((−1)^n n!)/6){((((√3)−i)j^(n+1)  −((√3)+i)j^−^(n+1)  )/1)}  = (((−1)^n n!)/3)   +(((−1)^n n!)/3) Im{ ((√3)−i)j^(n+1) }  but ((√3)−i)j^(n+1)  =2 (((√3)/2)−(1/2))(e^(i((2π)/3)) )^(n+1)   = 2 e^(−i(π/6))   e^(i(2/3)(n+1)π)   = 2 e^(i(  ((2(n+1)π)/3)−(π/6)))  ⇒
2)wehavef(x)=n=0f(n)(0)n!xnbutf(n)(0)=(1)nn!33+i6(1)nn!jn+1+3i6(1)nn!jn+1=(1)nn!3+(1)nn!6{3ijn+13+ijn+1}=(1)nn!3+(1)nn!6{(3i)jn+1(3+i)jn+11}=(1)nn!3+(1)nn!3Im{(3i)jn+1}but(3i)jn+1=2(3212)(ei2π3)n+1=2eiπ6ei23(n+1)π=2ei(2(n+1)π3π6)
Commented by abdo.msup.com last updated on 27/May/18
f^((n)) (0) = (((−1)^n n!)/3) +(2/3)(−1)^n n!sin(((2(n+1)π)/3)−(π/6))  ⇒f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!))x^n   =Σ_(n=0) ^∞  (((−1)^n )/3){ 1 +2sin(((2(n+1)π)/3) −(π/6))}x^n   another method   we have f(x) =(1/(1+x^3 )) so for ∣x∣<1  f(x) =Σ_(n=0) ^∞  (−1)^n  x^(3n)  .
f(n)(0)=(1)nn!3+23(1)nn!sin(2(n+1)π3π6)f(x)=n=0f(n)(0)n!xn=n=0(1)n3{1+2sin(2(n+1)π3π6)}xnanothermethodwehavef(x)=11+x3soforx∣<1f(x)=n=0(1)nx3n.

Leave a Reply

Your email address will not be published. Required fields are marked *