Menu Close

let-f-x-1-1-x-n-with-n-integr-1-find-f-x-and-f-x-2-find-the-poles-of-f-3-calculate-f-n-0-4-developp-f-at-integr-serie-




Question Number 37277 by abdo.msup.com last updated on 11/Jun/18
let f(x) = (1/(1+x^n ))  with n integr  1)find f^′ (x) and f^(′′) (x)  2) find the poles of f  3)calculate f^((n)) (0)  4) developp f at integr serie.
letf(x)=11+xnwithnintegr1)findf(x)andf(x)2)findthepolesoff3)calculatef(n)(0)4)developpfatintegrserie.
Commented by prof Abdo imad last updated on 16/Jun/18
1)f^′ (x)=−((nx^(n−1) )/((1+x^n )^2 )) and  f^(′′) (x)=−((n(n−1)x^(n−2) (1+x^n )^2  −2(1+x^n )nx^(n−1) nx^(n−1) )/((1+x^n )^4 ))  =−((n(n−1)x^(n−2) (1+x^n )−2n^2  x^(2n−2) )/((1+x^n )^3 ))  2)z^n  +1=0 ⇔ z^n =e^(iπ)   so if z=re^(iθ)  we get  r=1 and nθ=(2k+1)π ⇒θ_k =(((2k+1)π)/n)  so the poles of f are z_k =e^(i(((2k+1)π)/n))   and k ∈[[0,n−1]].
1)f(x)=nxn1(1+xn)2andf(x)=n(n1)xn2(1+xn)22(1+xn)nxn1nxn1(1+xn)4=n(n1)xn2(1+xn)2n2x2n2(1+xn)32)zn+1=0zn=eiπsoifz=reiθwegetr=1andnθ=(2k+1)πθk=(2k+1)πnsothepolesoffarezk=ei(2k+1)πnandk[[0,n1]].
Commented by prof Abdo imad last updated on 16/Jun/18
3) f(x)=Σ_(k=0) ^(n−1)    (λ_k /(x−z_k ))  λ_k = (1/(n z_k ^(n−1) )) =−(z_k /n) ⇒f(x)=−(1/n)Σ_(k=0) ^(n−1)   (z_k /(x−z_k )) ⇒  f^((p)) (x) =−(1/n)Σ_(k=0) ^(n−1)  z_k (  (((−1)^p p!)/((x−z_k )^(p+1) )))  =((p!(−1)^(p+1) )/n) Σ_(k=0) ^(n−1)    (z_k /((x−z_k )^(p+1) )) ⇒  f^((p)) (0)= ((p!(−1)^(p+1) )/n) Σ_(k=0) ^(n−1)    (z_k /((−1)^(p+1)  z_k ^(p+1) ))  =((p!)/n) Σ_(k=0) ^(n−1)   z_k ^(−p)  .
3)f(x)=k=0n1λkxzkλk=1nzkn1=zknf(x)=1nk=0n1zkxzkf(p)(x)=1nk=0n1zk((1)pp!(xzk)p+1)=p!(1)p+1nk=0n1zk(xzk)p+1f(p)(0)=p!(1)p+1nk=0n1zk(1)p+1zkp+1=p!nk=0n1zkp.
Commented by prof Abdo imad last updated on 16/Jun/18
f(x)=Σ_(p=0) ^∞    (x^p /(p!)) f^((p)) (0)  =Σ_(p=0) ^∞   { ((p!)/n)Σ_(k=0) ^(n−1)  z_k ^(−p) }(x^p /(p!))  =(1/n) Σ_(p=0) ^∞   Σ_(k=0) ^(n−1)    z_k ^(−p)  x^p   but for ∣x∣<1  we have also  f(x) = (1/(1+x^n )) =Σ_(p=0) ^∞  (−1)^p  x^(np)  .
f(x)=p=0xpp!f(p)(0)=p=0{p!nk=0n1zkp}xpp!=1np=0k=0n1zkpxpbutforx∣<1wehavealsof(x)=11+xn=p=0(1)pxnp.

Leave a Reply

Your email address will not be published. Required fields are marked *