let-f-x-1-1-x-n-with-n-integr-1-find-f-x-and-f-x-2-find-the-poles-of-f-3-calculate-f-n-0-4-developp-f-at-integr-serie- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 37277 by abdo.msup.com last updated on 11/Jun/18 letf(x)=11+xnwithnintegr1)findf′(x)andf″(x)2)findthepolesoff3)calculatef(n)(0)4)developpfatintegrserie. Commented by prof Abdo imad last updated on 16/Jun/18 1)f′(x)=−nxn−1(1+xn)2andf″(x)=−n(n−1)xn−2(1+xn)2−2(1+xn)nxn−1nxn−1(1+xn)4=−n(n−1)xn−2(1+xn)−2n2x2n−2(1+xn)32)zn+1=0⇔zn=eiπsoifz=reiθwegetr=1andnθ=(2k+1)π⇒θk=(2k+1)πnsothepolesoffarezk=ei(2k+1)πnandk∈[[0,n−1]]. Commented by prof Abdo imad last updated on 16/Jun/18 3)f(x)=∑k=0n−1λkx−zkλk=1nzkn−1=−zkn⇒f(x)=−1n∑k=0n−1zkx−zk⇒f(p)(x)=−1n∑k=0n−1zk((−1)pp!(x−zk)p+1)=p!(−1)p+1n∑k=0n−1zk(x−zk)p+1⇒f(p)(0)=p!(−1)p+1n∑k=0n−1zk(−1)p+1zkp+1=p!n∑k=0n−1zk−p. Commented by prof Abdo imad last updated on 16/Jun/18 f(x)=∑p=0∞xpp!f(p)(0)=∑p=0∞{p!n∑k=0n−1zk−p}xpp!=1n∑p=0∞∑k=0n−1zk−pxpbutfor∣x∣<1wehavealsof(x)=11+xn=∑p=0∞(−1)pxnp. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-I-n-0-4-1-x-x-n-x-dx-Next Next post: calculate-D-x-cos-x-2-y-2-dxdy-with-D-x-y-R-2-0-x-1-and-1-y-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.