Menu Close

let-f-x-1-1-x-x-2-dvelopp-f-at-integr-serie-




Question Number 33094 by abdo imad last updated on 10/Apr/18
let f(x)= (1/(1+x+x^2 ))  dvelopp f at integr serie.
$${let}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }\:\:{dvelopp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$
Commented by prof Abdo imad last updated on 11/Apr/18
f(x) is developped at form f(x)=Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n   but we have proved that  f^((n)) (0) = ((2(n!))/( (√3))) sin(((2(n+1)π)/3))  ⇒  f(x) = Σ_(n=0) ^∞   (2/( (√3))) sin(((2(n+1)π)/3)) x^n  .
$${f}\left({x}\right)\:{is}\:{developped}\:{at}\:{form}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{f}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!}\:{x}^{{n}} \\ $$$${but}\:{we}\:{have}\:{proved}\:{that}\:\:{f}^{\left({n}\right)} \left(\mathrm{0}\right)\:=\:\frac{\mathrm{2}\left({n}!\right)}{\:\sqrt{\mathrm{3}}}\:{sin}\left(\frac{\mathrm{2}\left({n}+\mathrm{1}\right)\pi}{\mathrm{3}}\right) \\ $$$$\Rightarrow\:\:{f}\left({x}\right)\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:{sin}\left(\frac{\mathrm{2}\left({n}+\mathrm{1}\right)\pi}{\mathrm{3}}\right)\:{x}^{{n}} \:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *