Question Number 48261 by Abdo msup. last updated on 21/Nov/18

Commented by maxmathsup by imad last updated on 22/Nov/18
![1) we have for x ≠0f(x)=∫_(1/2) ^1 (dt/(2+ch(xt))) =_(xt=u) ∫_(x/2) ^x (du/(x(2+ch(u))) =(1/x) ∫_(x/2) ^x (du/(2+((e^u +e^(−u) )/2))) =(2/x) ∫_(x/2) ^x (du/(4 +e^u +e^(−u) )) =_(e^u =α) (2/x) ∫_e^(x/2) ^e^x (dα/(α(4+α +α^(−1) ))) =(2/x) ∫_e^(x/2) ^e^x (dα/(α^2 +4α +1)) =(2/x) ∫_e^(x/2) ^e^x (dα/((α+2)^2 −3)) =(2/x) ∫_e^(x/2) ^e^x (dα/((α−1)(α+5))) =(1/(3x)) ∫_e^(x/2) ^e^x {(1/(α−1)) −(1/(α+5))}dα = (1/(3x))[ln∣((α−1)/(α+5))∣]_e^(x/2) ^e^x =(1/(3x)){ln∣((e^x −1)/(e^x +5))∣−ln∣((e^(x/2) −1)/(e^(x/2) +5))∣}](https://www.tinkutara.com/question/Q48344.png)
Commented by maxmathsup by imad last updated on 22/Nov/18

Commented by maxmathsup by imad last updated on 22/Nov/18

Commented by maxmathsup by imad last updated on 22/Nov/18
