Menu Close

let-f-x-1-2-1-dt-2-ch-xt-1-find-a-explicit-form-of-f-x-2-calculate-g-x-1-2-1-tsh-xt-2-ch-xt-2-dt-3-find-the-value-of-1-2-1-dt-2-ch-3t-and-1-2-1-




Question Number 48261 by Abdo msup. last updated on 21/Nov/18
let f(x) =∫_(1/2) ^1   (dt/(2+ch(xt)))  1) find a explicit form of f(x)  2) calculate g(x)=∫_(1/2) ^1   ((tsh(xt))/((2+ch(xt))^2 ))dt  3) find the value of ∫_(1/2) ^1    (dt/(2+ch(3t))) and ∫_(1/2) ^1    ((tsh(2t))/((2+ch(2t))^2 ))dt  4) let u_n   =∫_(1/2) ^1   (dt/(2+ch(nt)))  study the convergence of Σu_n   and Σ(u_n /n) .
letf(x)=121dt2+ch(xt)1)findaexplicitformoff(x)2)calculateg(x)=121tsh(xt)(2+ch(xt))2dt3)findthevalueof121dt2+ch(3t)and121tsh(2t)(2+ch(2t))2dt4)letun=121dt2+ch(nt)studytheconvergenceofΣunandΣunn.
Commented by maxmathsup by imad last updated on 22/Nov/18
1) we have for x ≠0f(x)=∫_(1/2) ^1   (dt/(2+ch(xt))) =_(xt=u)   ∫_(x/2) ^x    (du/(x(2+ch(u)))  =(1/x)  ∫_(x/2) ^x    (du/(2+((e^u  +e^(−u) )/2))) =(2/x) ∫_(x/2) ^x     (du/(4 +e^u  +e^(−u) )) =_(e^u =α)  (2/x) ∫_e^(x/2)  ^e^x    (dα/(α(4+α +α^(−1) )))  =(2/x) ∫_e^(x/2)  ^e^x      (dα/(α^2  +4α +1)) =(2/x) ∫_e^(x/2)  ^e^x      (dα/((α+2)^2  −3)) =(2/x) ∫_e^(x/2)  ^e^x    (dα/((α−1)(α+5)))  =(1/(3x)) ∫_e^(x/2)  ^e^x   {(1/(α−1)) −(1/(α+5))}dα = (1/(3x))[ln∣((α−1)/(α+5))∣]_e^(x/2)  ^e^x    =(1/(3x)){ln∣((e^x −1)/(e^x  +5))∣−ln∣((e^(x/2) −1)/(e^(x/2)  +5))∣}
1)wehaveforx0f(x)=121dt2+ch(xt)=xt=ux2xdux(2+ch(u)=1xx2xdu2+eu+eu2=2xx2xdu4+eu+eu=eu=α2xex2exdαα(4+α+α1)=2xex2exdαα2+4α+1=2xex2exdα(α+2)23=2xex2exdα(α1)(α+5)=13xex2ex{1α11α+5}dα=13x[lnα1α+5]ex2ex=13x{lnex1ex+5lnex21ex2+5}
Commented by maxmathsup by imad last updated on 22/Nov/18
2) we have f^′ (x) =∫_(1/2) ^1  (∂/∂x)((dt/(2+ch(xt)))) = ∫_(1/2) ^1 ((−t sh(xt))/((2+ch(xt))^2 ))dt ⇒  ∫_(1/2) ^1   ((tsh(xt))/((2+ch(xt)^2 )))dt =−f^′ (x) but   f^′ (x)=−(1/(3x^2 )){ ln∣((e^x −1)/(e^x  +5))∣−ln∣((e^(x/2) −1)/(e^(x/2)  +5))∣  +(1/(3x)){(e^x /(e^x −1)) −(e^x /(e^x  +5)) −(1/2) (e^(x/2) /e^((x/(2 ))−1) ) +(1/2)(e^(x/2) /(e^(x/2)  +5))} ⇒g(x)=−f^′ (x)
2)wehavef(x)=121x(dt2+ch(xt))=121tsh(xt)(2+ch(xt))2dt121tsh(xt)(2+ch(xt)2)dt=f(x)butf(x)=13x2{lnex1ex+5lnex21ex2+5+13x{exex1exex+512ex2ex21+12ex2ex2+5}g(x)=f(x)
Commented by maxmathsup by imad last updated on 22/Nov/18
3) ∫_(1/2) ^1   (dt/(2+ch(3t))) =f(3)=(1/9){ln∣((e^3 −1)/(e^3  +5))∣−ln∣((e^(3/2) −1)/(e^(3/2)  +5))∣
3)121dt2+ch(3t)=f(3)=19{lne31e3+5lne321e32+5
Commented by maxmathsup by imad last updated on 22/Nov/18
∫_(1/2) ^1   ((tsh(2t))/((2+ch(2t))^2 ))dt =g(2) =−f^′ (2) =(1/(12)){ln∣((e^2 −1)/(e^2  +5))∣−ln∣((e−1)/(e+5))∣}  +(1/6){ (e^2 /(e^2 −1)) −(e^2 /(e^2  +5)) −(1/2) (e/(e−1)) +(1/2) (e/(e+5))}
121tsh(2t)(2+ch(2t))2dt=g(2)=f(2)=112{lne21e2+5lne1e+5}+16{e2e21e2e2+512ee1+12ee+5}

Leave a Reply

Your email address will not be published. Required fields are marked *