Menu Close

let-f-x-1-2x-2-x-2-3-1-calculate-lim-x-f-x-and-lim-x-f-x-2-calculate-lim-x-f-x-x-and-lim-x-f-x-x-3-give-the-assymtote-to-graph-C-f-4-give-the-assy




Question Number 38721 by maxmathsup by imad last updated on 28/Jun/18
let  f(x)=(√(1+2x^2 ))  −x(√2)  +3  1) calculate lim_(x→+∞)  f(x) and lim_(x→−∞) f(x)  2)calculate lim_(x→+∞)   ((f(x))/x) and lim_(x→−∞)   ((f(x))/x)  3)give the assymtote to graph C_f   4) give the assymtote to C_f   at point A(0,f(0))  5) find f^(−1) (x) and calculate (f^(−1) )^′ (x)  6) calculate  ∫_0 ^1 f(x)dx.
letf(x)=1+2x2x2+31)calculatelimx+f(x)andlimxf(x)2)calculatelimx+f(x)xandlimxf(x)x3)givetheassymtotetographCf4)givetheassymtotetoCfatpointA(0,f(0))5)findf1(x)andcalculate(f1)(x)6)calculate01f(x)dx.
Commented by prof Abdo imad last updated on 02/Jul/18
1) we have (√(1+2x^2  )) =x(√2)(√( 1+(1/(2x^2 ))))  ∼  x(√2){ 1+ (1/(4x^2 ))}  (x→+∞) ⇒f(x)∼ ((√2)/(4x)) +3 ⇒  lim_(x→+∞)  f(x)= 3 also we can use this method  lim_(x→+∞) f(x)=lim((((√(1+2x^2 ))−(x(√2)−3))((√(1+2x^2 )) +x(√2)−3))/( (√(1+2x^2 )) +x(√2) −3))  =lim_(x→+∞) ((1+2x^2  −(2x^2  −6x(√2) +9))/( (√(1+2x^2 )) +x(√2) −3))  =lim_(x→+∞) ((6x(√2) −8)/( (√(1+2x^2 )) +x(√2)−3))  =lim_(x→+∞)   ((6x(√2)−8)/(x(√2){(√(1+(1/(2x^2 )))) +1−(3/(x(√2)))})) =3  lim_(x→−∞) f(x)=lim_(x→−∞) (√(1+2x^2 )) −x(√2) +3 =+∞  2)we have lim_(x→+∗)  f(x)=3 ⇒lim_(x→+∞) ((f(x))/x) =0  (√(1+2x^2 ))=−x(√2)(√(1+(1/(2x^2 ))))  for x<0  ∼−x(√2)( 1+(1/(4x^2 )))(x→−∞) ⇒  f(x) ∼ −2(√2)x  −((√2)/(4x)) +3 ⇒ ((f(x))/x) ∼−2(√2) −((√2)/(4x^2 )) +(3/x)  ⇒lim_(x→+∞)   ((f(x))/x) ^ =−2(√2)
1)wehave1+2x2=x21+12x2x2{1+14x2}(x+)f(x)24x+3limx+f(x)=3alsowecanusethismethodlimx+f(x)=lim(1+2x2(x23))(1+2x2+x23)1+2x2+x23=limx+1+2x2(2x26x2+9)1+2x2+x23=limx+6x281+2x2+x23=limx+6x28x2{1+12x2+13x2}=3limxf(x)=limx1+2x2x2+3=+2)wehavelimx+f(x)=3limx+f(x)x=01+2x2=x21+12x2forx<0x2(1+14x2)(x)f(x)22x24x+3f(x)x2224x2+3xlimx+f(x)x=22
Commented by prof Abdo imad last updated on 02/Jul/18
lim_(x→−∞) ((f(x))/x) =−2(√2)  but we have  f(x) ∼ −2(√2)x +3 −((√2)/(4x)) (x→−∞) ⇒  lim_(x→−∞) f(x)−(−2(√2)x+3)=0 so   y=−2(√2)+3 is equation of asshmptote to C_f   at −∞
limxf(x)x=22butwehavef(x)22x+324x(x)limxf(x)(22x+3)=0soy=22+3isequationofasshmptotetoCfat
Commented by prof Abdo imad last updated on 02/Jul/18
4) first change assymptote by equation of   tangent  we have f^′ (x)= ((4x)/(2(√(1+2x^2 )))) −(√2)= ((2x)/( (√(1+2x^2 )))) −(√2)  ⇒f^′ (0) =−(√2)  f(0) =4  ⇒ the equation of assymptote is  y =f^′ (0)x +f(0) =−(√2)x +4
4)firstchangeassymptotebyequationoftangentwehavef(x)=4x21+2x22=2x1+2x22f(0)=2f(0)=4theequationofassymptoteisy=f(0)x+f(0)=2x+4
Commented by prof Abdo imad last updated on 02/Jul/18
5) f(x)=y ⇔ x =f^(−1) (y) ⇒(√(1+2x^2 ))−x(√2)+3=y  ⇒(√(1+2x^2 ))=(x(√2)+y−3)⇒  1+2x^2  =(x(√2)+y−3)^2  ⇒  1+2x^2  =2x^2  +2x(√2)(y−3) +y^2  −6y +9 ⇒  2(√2)(y−3)x +y^(2 ) −6y +8=0 ⇒  2(√2)(y−3)x = −y^2  +6y −8 ⇒  x=((−y^2  +6y −8)/(2(√2)(y−3))) =f^(−1) (y)  ⇒  f^(−1) (x) = ((x^(2 )  −6x +8)/(2(√2)(3−x))) .  (f^(−1) (x))^′  =(1/(2(√2))){ (((2x−6)(3−x) +(x^2  −6x +8))/((3−x)^2 ))}  =(1/(2(√2))){ ((6x −2x^2  −18 +6x +x^(2 ) −6x +8)/((3−x)^2 ))}  =(1/(2(√2))){ ((−x^2   +6x  −10)/((3−x)^2 ))}
5)f(x)=yx=f1(y)1+2x2x2+3=y1+2x2=(x2+y3)1+2x2=(x2+y3)21+2x2=2x2+2x2(y3)+y26y+922(y3)x+y26y+8=022(y3)x=y2+6y8x=y2+6y822(y3)=f1(y)f1(x)=x26x+822(3x).(f1(x))=122{(2x6)(3x)+(x26x+8)(3x)2}=122{6x2x218+6x+x26x+8(3x)2}=122{x2+6x10(3x)2}

Leave a Reply

Your email address will not be published. Required fields are marked *