Menu Close

let-f-x-1-cosx-prove-that-f-n-x-p-n-sinx-cos-n-1-x-with-p-n-is-apolynom-2-calculate-p-1-p-2-and-p-3-3-detdrmine-p-n-1-




Question Number 50375 by prof Abdo imad last updated on 16/Dec/18
let f(x)=(1/(cosx)) prove that f^()n)) (x)=((p_n (sinx))/(cos^(n+1) x))  with p_n  is apolynom  2) calculate  p_1 ,p_2  and p_3   3) detdrmine p_n (1).
letf(x)=1cosxprovethatf)n)(x)=pn(sinx)cosn+1xwithpnisapolynom2)calculatep1,p2andp33)detdrminepn(1).
Answered by kaivan.ahmadi last updated on 10/Jan/19
f′(x)=((sinx)/(cos^2 x))⇒p_1 (x)=x  f^(′′) (x)=((cos^3 x+2sin^2 xcosx)/(cos^4 x))=((cos^2 x+2sin^2 x)/(cos^3 x))=  ((1+sin^2 x)/(cos^3 x))⇒p_2 (x)=x^2 +1  f^((3)) (x)=((2sinxcos^4 x+3sinxcos^2 x(1+sin^2 x))/(cos^6 x))=  ((2sinxcos^4 x+3sinxcos^2 x+3sin^3 xcos^2 x)/(cos^6 x))=  ((2sinxcos^2 x+3sinx+3sin^3 x)/(cos^4 x))=  ((5sinx+sin^3 x)/(cos^4 x))⇒p_3 (x)=x^3 +5x  ⋮  f^((4)) (x)=((5cos^5 x+3sin^2 xcos^5 x+20sin^2 xcos^3 x+4sin^4 xcos^3 x)/(cos^8 x))=  ((5cos^2 x+3sin^2 xcos^2 x+20sin^2 x+4sin^4 x)/(cos^5 x))=  ((5−5sin^2 x+3sin^2 x−3sin^4 x+20sin^2 x+4sin^4 x)/(cos^5 x))=  ((5+18sin^2 x+sin^4 x)/(cos^5 x))⇒p_4 (x)=x^4 +18x^2 +5  ⋮  p_1 (1)=1=1!  p_2 (1)=2=2!  p_3 (1)=6=3!  p_4 (1)=24=4!  ⋮  p_n (1)=n!
f(x)=sinxcos2xp1(x)=xf(x)=cos3x+2sin2xcosxcos4x=cos2x+2sin2xcos3x=1+sin2xcos3xp2(x)=x2+1f(3)(x)=2sinxcos4x+3sinxcos2x(1+sin2x)cos6x=2sinxcos4x+3sinxcos2x+3sin3xcos2xcos6x=2sinxcos2x+3sinx+3sin3xcos4x=5sinx+sin3xcos4xp3(x)=x3+5xf(4)(x)=5cos5x+3sin2xcos5x+20sin2xcos3x+4sin4xcos3xcos8x=5cos2x+3sin2xcos2x+20sin2x+4sin4xcos5x=55sin2x+3sin2x3sin4x+20sin2x+4sin4xcos5x=5+18sin2x+sin4xcos5xp4(x)=x4+18x2+5p1(1)=1=1!p2(1)=2=2!p3(1)=6=3!p4(1)=24=4!pn(1)=n!

Leave a Reply

Your email address will not be published. Required fields are marked *