Menu Close

let-f-x-1-e-x-n-1-calculate-f-p-x-and-f-p-o-2-calculate-f-n-0-3-developp-f-at-integr-serie-




Question Number 37901 by math khazana by abdo last updated on 19/Jun/18
let f(x)= (1+e^(−x) )^n   1) calculate f^((p)) (x)  and f^((p)) (o)  2)calculate f^((n)) (0)  3)developp f at integr serie .
$${let}\:{f}\left({x}\right)=\:\left(\mathrm{1}+{e}^{−{x}} \right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({p}\right)} \left({x}\right)\:\:{and}\:{f}^{\left({p}\right)} \left({o}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right){developp}\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$
Commented by math khazana by abdo last updated on 21/Jun/18
we have f(x)=Σ_(k=0) ^n  C_n ^k   e^(−kx)  ⇒  f^((p)) (x)=Σ_(k=0) ^n  C_n ^k   (e^(−kx) )^((p))   but  (e^(−kx) )^((1)) =−k e^(−kx)  and (e^(−kx) )^((2)) =(−k^ )^2  e^(−kx)   (e^(−kx) )^((p)) =(−k)^p  e^(−kx)  ⇒  f^((p)) (x)= Σ_(k=0) ^n  C_n ^k   (−k)^p  e^(−kx)  ⇒  f^((p)) (0) = Σ_(k=0) ^n  (−k)^p  C_n ^k     2) f^((n)) (0)=Σ_(k=0) ^n (−k)^n  C_n ^k   3)f(x)=Σ_(p=0) ^∞  ((f^((p)) (0))/(p!)) x^p   =Σ_(p=0) ^∞    (1/(p!)){ Σ_(k=0) ^n (−k)^p  C_n ^k } x^(p )    .
$${we}\:{have}\:{f}\left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:{e}^{−{kx}} \:\Rightarrow \\ $$$${f}^{\left({p}\right)} \left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:\left({e}^{−{kx}} \right)^{\left({p}\right)} \:\:{but} \\ $$$$\left({e}^{−{kx}} \right)^{\left(\mathrm{1}\right)} =−{k}\:{e}^{−{kx}} \:{and}\:\left({e}^{−{kx}} \right)^{\left(\mathrm{2}\right)} =\left(−{k}^{} \right)^{\mathrm{2}} \:{e}^{−{kx}} \\ $$$$\left({e}^{−{kx}} \right)^{\left({p}\right)} =\left(−{k}\right)^{{p}} \:{e}^{−{kx}} \:\Rightarrow \\ $$$${f}^{\left({p}\right)} \left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:\left(−{k}\right)^{{p}} \:{e}^{−{kx}} \:\Rightarrow \\ $$$${f}^{\left({p}\right)} \left(\mathrm{0}\right)\:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(−{k}\right)^{{p}} \:{C}_{{n}} ^{{k}} \:\: \\ $$$$\left.\mathrm{2}\right)\:{f}^{\left({n}\right)} \left(\mathrm{0}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \left(−{k}\right)^{{n}} \:{C}_{{n}} ^{{k}} \\ $$$$\left.\mathrm{3}\right){f}\left({x}\right)=\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{{f}^{\left({p}\right)} \left(\mathrm{0}\right)}{{p}!}\:{x}^{{p}} \\ $$$$=\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{p}!}\left\{\:\sum_{{k}=\mathrm{0}} ^{{n}} \left(−{k}\right)^{{p}} \:{C}_{{n}} ^{{k}} \right\}\:{x}^{{p}\:} \:\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *