Menu Close

let-f-x-1-n-x-2-nx-3-with-n-integr-1-calculate-lim-x-and-lim-x-f-x-2-calculate-f-x-3-give-the-equation-of-assymptote-of-f-at-point-A-1-f-1-4-calculate-lim-x-




Question Number 35986 by abdo mathsup 649 cc last updated on 26/May/18
let f(x)= (√(1 +n x^2 ))   −nx +3  with n integr  1) calculate lim_(x→+∞)  and lim_(x→−∞) f(x)  2) calculate f^′ (x)  3) give the equation of assymptote of f at  point  A(1,f(1)) .  4)calculate lim_(x→+∞)  ((f(x))/x) and lim_(x→−∞)   ((f(x))/x) .
letf(x)=1+nx2nx+3withnintegr1)calculatelimx+andlimxf(x)2)calculatef(x)3)givetheequationofassymptoteoffatpointA(1,f(1)).4)calculatelimx+f(x)xandlimxf(x)x.
Commented by prof Abdo imad last updated on 31/Aug/18
1)we have lim_(x→−∞) (−nx +3)=+∞ and  lim_(x→−∞) (√(1+nx^2 ))=+∞ ⇒lim_(x→−∞)    f(x) =+∞  for x>0  (√(1+nx^2 ))=(√(nx^2 (1+(1/(nx^2 )))))  =x(√n)(√(1+(1/(nx^2 )))) ∼x(√n){1+(1/(2nx^2 ))}=x(√n) +((√n)/(2nx))  =x(√n) +(1/(2x(√n))) (x→+∞) ⇒  f(x) ∼((√n)−n)x  +(1/(2x(√n))) −3 (x→+∞)⇒  f(x) ∼−(√n)((√n)−1)x ⇒lim_(x→+∞) f(x) =−∞
1)wehavelimx(nx+3)=+andlimx1+nx2=+limxf(x)=+forx>01+nx2=nx2(1+1nx2)=xn1+1nx2xn{1+12nx2}=xn+n2nx=xn+12xn(x+)f(x)(nn)x+12xn3(x+)f(x)n(n1)xlimx+f(x)=
Commented by prof Abdo imad last updated on 31/Aug/18
2)∀x∈R     f^′ (x)=((2nx)/(2(√(1+nx^2 )))) −n  =  ((nx)/( (√(1+nx^2 )))) −n =n{(x/( (√(1+nx^2 )))) −1}.
2)xRf(x)=2nx21+nx2n=nx1+nx2n=n{x1+nx21}.
Commented by prof Abdo imad last updated on 31/Aug/18
3) we have f(1) =(√(1+n))−n+3  and  f^′ (x)= ((nx)/( (√(1+nx^2 )))) −n ⇒f^′ (1)= (n/( (√(1+n)))) −n so the  equation of assymptote at point A is  y =f^′ (1)(x−1) +f(1) ⇒  y =((n/( (√(1+n)))) −n)(x−1) +(√(1+n)) −n +3 .
3)wehavef(1)=1+nn+3andf(x)=nx1+nx2nf(1)=n1+nnsotheequationofassymptoteatpointAisy=f(1)(x1)+f(1)y=(n1+nn)(x1)+1+nn+3.
Commented by prof Abdo imad last updated on 31/Aug/18
4) we have for x>0    ((f(x))/x) =(√((1+nx^2 )/x^2 )) −n +(3/x)  =(√(n+(1/x^2 )))−n+(3/x) ⇒lim_(x→+∞)   ((f(x))/x) =(√n)−n  for x<0   ((f(x))/x)  =−(√((1+nx^2 )/x^2 )) −n +(3/x)  =−(√(n+(1/x^2 ))) −n +(3/x) ⇒lim_(n→−∞)   ((f(x))/x) =−(√n)−n .
4)wehaveforx>0f(x)x=1+nx2x2n+3x=n+1x2n+3xlimx+f(x)x=nnforx<0f(x)x=1+nx2x2n+3x=n+1x2n+3xlimnf(x)x=nn.
Commented by maxmathsup by imad last updated on 31/Aug/18
3) forgive equation of tangente....
3)forgiveequationoftangente.

Leave a Reply

Your email address will not be published. Required fields are marked *