Question Number 40090 by maxmathsup by imad last updated on 15/Jul/18
$${let}\:{f}\left({x}\right)=\:\mathrm{1}−\left[{x}\right]−\left[\mathrm{1}−{x}\right] \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}\:{is}\:{periodic}\:{with}\:{period}\:\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{give}\:{a}\:{expression}\:{of}\:{f}\left({x}\right)\:{when}\:\:{x}\in\left[\mathrm{0},\mathrm{1}\left[\right.\right. \\ $$
Commented by math khazana by abdo last updated on 29/Jul/18
$$\left.\mathrm{1}\right)\:{first}\:{we}\:{have}\:{f}\left({x}\right)=\mathrm{1}−\left[{x}\right]−\mathrm{1}−\left[−{x}\right] \\ $$$$=−\left[{x}\right]−\left[−{x}\right]\:\Rightarrow \\ $$$${f}\left({x}+\mathrm{1}\right)\:=−\left[{x}+\mathrm{1}\right]−\left[−\left({x}+\mathrm{1}\right)\right] \\ $$$$=−\left[{x}\right]−\mathrm{1}−\left[−{x}\right]+\mathrm{1}={f}\left({x}\right)\:{so}\:{f}\:{is}\:{periodic}\:{with} \\ $$$${T}=\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{if}\:\mathrm{0}\leqslant{x}<\mathrm{1}\:\left[{x}\right]=\mathrm{0}\:{and}\:−\mathrm{1}<−{x}\leqslant\mathrm{0}\:\Rightarrow\left[−{x}\right]=−\mathrm{1}\:\Rightarrow \\ $$$${f}\left({x}\right)=−\left[−{x}\right]=−\left(−\mathrm{1}\right)=\mathrm{1}\:. \\ $$$$ \\ $$