Menu Close

let-f-x-1-x-2-2-cos-x-1-1-calculate-f-n-x-2-find-0-f-x-dx-3-find-0-f-n-x-dx-




Question Number 81165 by abdomathmax last updated on 09/Feb/20
let f(x)=(1/(x^2 −2(cosθ)x +1))  1) calculate f^((n)) (x)  2) find ∫_0 ^∞  f(x)dx  3) find ∫_0 ^∞  f^((n)) (x)dx
letf(x)=1x22(cosθ)x+11)calculatef(n)(x)2)find0f(x)dx3)find0f(n)(x)dx
Commented by mathmax by abdo last updated on 10/Feb/20
1)let solve x^2 −2cosθ)x +1=0 →Δ^′ =cos^2 x−1=−sin^2 x ⇒  x_1 =cosθ +isinθ  =e^(iθ)  and x_2 =cosθ−isinθ =e^(−iθ)   f(x)=(1/((x−e^(iθ) )(x−e^(−iθ) ))) =(1/(2isinθ))((1/(x−e^(iθ) ))−(1/(x−e^(−iθ) )))  (if θ ≠kπ)  ⇒f^((n)) (x)=(1/(2isinθ)){  (((−1)^n n!)/((x−e^(iθ) )^(n+1) ))−(((−1)^n n!)/((x−e^(−iθ) )^(n+1) ))}  =(((−1)^n n!)/(2isinθ)){(((x−e^(−iθ) )^(n+1) −(x−e^(iθ) )^(n+1) )/((x^2 −2cosθ +1)^(n+1) ))}  =(((−1)^(n+1) n!)/(2isinθ)){((2iIm((x−e^(iθ) )^(n+1) ))/((x^2 −2cosθ +1)^(n+1) ))} ⇒  f^((n)) (x)=(((−1)^(n+1) n! ×Im((x−e^(iθ) )^(n+1) ))/(sinθ(x^2 −2cosθ +1)^(n+1) ))
1)letsolvex22cosθ)x+1=0Δ=cos2x1=sin2xx1=cosθ+isinθ=eiθandx2=cosθisinθ=eiθf(x)=1(xeiθ)(xeiθ)=12isinθ(1xeiθ1xeiθ)(ifθkπ)f(n)(x)=12isinθ{(1)nn!(xeiθ)n+1(1)nn!(xeiθ)n+1}=(1)nn!2isinθ{(xeiθ)n+1(xeiθ)n+1(x22cosθ+1)n+1}=(1)n+1n!2isinθ{2iIm((xeiθ)n+1)(x22cosθ+1)n+1}f(n)(x)=(1)n+1n!×Im((xeiθ)n+1)sinθ(x22cosθ+1)n+1
Commented by mathmax by abdo last updated on 10/Feb/20
2) if θ=kπ ⇒f(x)=(1/((x+^− 1)^2 )) ⇒∫ f(x)dx=−(1/(x+^− 1)) +c  if θ≠kπ ⇒∫_0 ^∞   f(x)dx =∫_0 ^∞   (dx/(x^2 −2cosθ x +cos^2 θ +sin^2 θ))
2)ifθ=kπf(x)=1(x+1)2f(x)dx=1x+1+cifθkπ0f(x)dx=0dxx22cosθx+cos2θ+sin2θ
Commented by mathmax by abdo last updated on 10/Feb/20
∫_0 ^∞ f(x)dx=∫_0 ^∞   (dx/((x−cosθ)^2  +sin^2 θ))  =_(x−cosθ =∣sinθ∣u)     ∫_(−((cosθ)/(∣sinθ∣))) ^(+∞)   (1/(sin^2 θ(1+u^2 )))∣sinθ∣ du  =(1/(∣sinθ∣)) [arctanu]_(−((cosθ)/(∣sinθ∣))) ^(+∞)  =(1/(∣sinθ∣)){(π/2) +arctan(((cosθ)/(∣sinθ∣)))} ⇒  if sinθ>0 ⇒∫_0 ^∞ f(x)dx=(1/(sinθ)){(π/2) +arctan((1/(tanθ)))}  =(1/(sinθ)){π−θ}  if sinθ<0 ⇒∫_0 ^∞ f(xdx=−(1/(sinθ)){(π/2)−arctan((1/(tanθ)))}  =−(1/(sinθ)){(π/2)−(−(π/2) −θ)} =−(1/(sinθ)){π +θ}
0f(x)dx=0dx(xcosθ)2+sin2θ=xcosθ=∣sinθucosθsinθ+1sin2θ(1+u2)sinθdu=1sinθ[arctanu]cosθsinθ+=1sinθ{π2+arctan(cosθsinθ)}ifsinθ>00f(x)dx=1sinθ{π2+arctan(1tanθ)}=1sinθ{πθ}ifsinθ<00f(xdx=1sinθ{π2arctan(1tanθ)}=1sinθ{π2(π2θ)}=1sinθ{π+θ}
Answered by mind is power last updated on 09/Feb/20
x^2 −2cos(θ)x+1=(x−e^(iθ) )(x−e^(−iθ) )  f(x)=(1/(2isin(θ))).(1/(x−e^(iθ) ))−(1/(2isin(θ))).(1/(x−e^(−iθ) ))  f(x)=2Re((1/(2i.sin(θ)(x−e^(iθ) ))))  g(x)=(1/(x−e^(iθ) )).(1/(2isin(θ)))  f^n =2Re(g^n (x))  g^n (x)=(((−1)^n n!.)/((x−e^(iθ) )^(n+1) )).(1/(2isin(θ)))  f(x)=2Re((((−1)^n n!)/((x−e^(iθ) )^(n+1) )).(1/(2isin(θ))))  =(−1)^n n! Re{(((x−e^(−iθ) )^(n+1) )/((x^2 −2cos(θ)x+1)^(n+1) )).(1/(2isin(θ)))}  x−e^(−iθ)   =x−cos(θ)+isin(θ)  =(√(x^2 −2cos(θ)x+1)).(((x−cos(θ))/( (√(x^2 −2xcos(θ)+1))))+((isin(θ))/( (√(x^2 −2xcos(θ)+1)))))    =(√(x^2 −2cos(θ)x+1)).e^(i(kπ+arctan(((sin(θ))/(x−cos(θ)))))) ,k∈{−1,0,1}  =(−1)^n n!((sin((n+1){kπ+arctan(((sin(θ))/(x−sin(θ))))}))/((x^2 −2xcos(θ)+1)^((n+1)/2) sin(θ)))  may bee error of calculus  2)(x^2 −2cos(θ)x+1)=(x−cos(θ))^2 +sin^2 (θ)  =sin^2 (θ)(((x/(sin(θ)))−cot(θ))^2 +1)  ∫(dx/((x^2 −2cos(θ)x+1)))=∫(dx/(sin^2 (θ)(((x/(sin(θ)))−cot(θ))^2 +1)))  ∀θ∈]0,2π[ ∣sin(θ)≠0  if sin(θ)=0⇒cos(θ)∈{−1,1}  since f(−x)=x^2 −2xcos(θ)+1⇒cos(θ)=1 is ennough  to find f(x),  ⇒f(x)=(1/((x−1)^2 )) not integrable over IR_+   ⇒θ≠0  θ=π⇒f(x)=(1/((x+1)^2 ))  ⇒∫_0 ^(+∞) (dx/((1+x)^2 ))=1  ∀θ∈[0,2π[−{0,π}  f(x)=(1/(sin^2 (θ){((x/(sin(θ)))−cot(θ))^2 +1}))  ∫_0 ^(+∞) f(x)dx=(1/(sin(θ)))[arctan((x/(sin(θ)))−cot(θ))]_0 ^(+∞)   if θ∈]0,π[  f(x)=(1/(sin(θ))){(π/2)+arctan(cot(θ))}  =(1/(sin(θ))){π−θ}  if θ∈]π,2π[  f(x)=(1/(sin(θ))){−(π/2)+arctan(cot(θ))}  =(1/(sin(θ))){−(π/2)+arctan(cot(π+(θ−π))}  =(1/(sin(θ))){−(π/2)+arctan(cot(θ−π))}=(1/(sin(θ))){−(π/2)+arctan(tan(((3π)/2)−θ))  =(1/(sin(θ))){−(π/2)+((3π)/2)−θ}=(1/(sin(θ)))(π−θ)  ⇒∫_0 ^(+∞) f(x)dx=((π−θ)/(sin(θ))),θ∈[0,2π]−{0,π}  θ=π⇒f(x)=1  we can see that  lim_(x→π) ((π−θ)/(sin(θ)))=−(1/(cos(π)))=1     3 ∀n≥2 =lim_(x→∞) f^(n−1) (x)−f^(n−1) (0)
x22cos(θ)x+1=(xeiθ)(xeiθ)f(x)=12isin(θ).1xeiθ12isin(θ).1xeiθf(x)=2Re(12i.sin(θ)(xeiθ))g(x)=1xeiθ.12isin(θ)fn=2Re(gn(x))gn(x)=(1)nn!.(xeiθ)n+1.12isin(θ)f(x)=2Re((1)nn!(xeiθ)n+1.12isin(θ))=(1)nn!Re{(xeiθ)n+1(x22cos(θ)x+1)n+1.12isin(θ)}xeiθ=xcos(θ)+isin(θ)=x22cos(θ)x+1.(xcos(θ)x22xcos(θ)+1+isin(θ)x22xcos(θ)+1)=x22cos(θ)x+1.ei(kπ+arctan(sin(θ)xcos(θ))),k{1,0,1}=(1)nn!sin((n+1){kπ+arctan(sin(θ)xsin(θ))})(x22xcos(θ)+1)n+12sin(θ)maybeeerrorofcalculus2)(x22cos(θ)x+1)=(xcos(θ))2+sin2(θ)=sin2(θ)((xsin(θ)cot(θ))2+1)dx(x22cos(θ)x+1)=dxsin2(θ)((xsin(θ)cot(θ))2+1)θ]0,2π[sin(θ)0ifsin(θ)=0cos(θ){1,1}sincef(x)=x22xcos(θ)+1cos(θ)=1isennoughtofindf(x),f(x)=1(x1)2notintegrableoverIR+θ0θ=πf(x)=1(x+1)20+dx(1+x)2=1θ[0,2π[{0,π}f(x)=1sin2(θ){(xsin(θ)cot(θ))2+1}0+f(x)dx=1sin(θ)[arctan(xsin(θ)cot(θ))]0+ifθ]0,π[f(x)=1sin(θ){π2+arctan(cot(θ))}=1sin(θ){πθ}ifθ]π,2π[f(x)=1sin(θ){π2+arctan(cot(θ))}=1sin(θ){π2+arctan(cot(π+(θπ))}=1sin(θ){π2+arctan(cot(θπ))}=1sin(θ){π2+arctan(tan(3π2θ))=1sin(θ){π2+3π2θ}=1sin(θ)(πθ)0+f(x)dx=πθsin(θ),θ[0,2π]{0,π}θ=πf(x)=1wecanseethatlimxππθsin(θ)=1cos(π)=13n2=limxfn1(x)fn1(0)
Commented by mathmax by abdo last updated on 10/Feb/20
thank you sir.
thankyousir.
Commented by mind is power last updated on 10/Feb/20
withe pleasur sir
withepleasursir

Leave a Reply

Your email address will not be published. Required fields are marked *