Question Number 81165 by abdomathmax last updated on 09/Feb/20

Commented by mathmax by abdo last updated on 10/Feb/20

Commented by mathmax by abdo last updated on 10/Feb/20

Commented by mathmax by abdo last updated on 10/Feb/20
![∫_0 ^∞ f(x)dx=∫_0 ^∞ (dx/((x−cosθ)^2 +sin^2 θ)) =_(x−cosθ =∣sinθ∣u) ∫_(−((cosθ)/(∣sinθ∣))) ^(+∞) (1/(sin^2 θ(1+u^2 )))∣sinθ∣ du =(1/(∣sinθ∣)) [arctanu]_(−((cosθ)/(∣sinθ∣))) ^(+∞) =(1/(∣sinθ∣)){(π/2) +arctan(((cosθ)/(∣sinθ∣)))} ⇒ if sinθ>0 ⇒∫_0 ^∞ f(x)dx=(1/(sinθ)){(π/2) +arctan((1/(tanθ)))} =(1/(sinθ)){π−θ} if sinθ<0 ⇒∫_0 ^∞ f(xdx=−(1/(sinθ)){(π/2)−arctan((1/(tanθ)))} =−(1/(sinθ)){(π/2)−(−(π/2) −θ)} =−(1/(sinθ)){π +θ}](https://www.tinkutara.com/question/Q81210.png)
Answered by mind is power last updated on 09/Feb/20
![x^2 −2cos(θ)x+1=(x−e^(iθ) )(x−e^(−iθ) ) f(x)=(1/(2isin(θ))).(1/(x−e^(iθ) ))−(1/(2isin(θ))).(1/(x−e^(−iθ) )) f(x)=2Re((1/(2i.sin(θ)(x−e^(iθ) )))) g(x)=(1/(x−e^(iθ) )).(1/(2isin(θ))) f^n =2Re(g^n (x)) g^n (x)=(((−1)^n n!.)/((x−e^(iθ) )^(n+1) )).(1/(2isin(θ))) f(x)=2Re((((−1)^n n!)/((x−e^(iθ) )^(n+1) )).(1/(2isin(θ)))) =(−1)^n n! Re{(((x−e^(−iθ) )^(n+1) )/((x^2 −2cos(θ)x+1)^(n+1) )).(1/(2isin(θ)))} x−e^(−iθ) =x−cos(θ)+isin(θ) =(√(x^2 −2cos(θ)x+1)).(((x−cos(θ))/( (√(x^2 −2xcos(θ)+1))))+((isin(θ))/( (√(x^2 −2xcos(θ)+1))))) =(√(x^2 −2cos(θ)x+1)).e^(i(kπ+arctan(((sin(θ))/(x−cos(θ)))))) ,k∈{−1,0,1} =(−1)^n n!((sin((n+1){kπ+arctan(((sin(θ))/(x−sin(θ))))}))/((x^2 −2xcos(θ)+1)^((n+1)/2) sin(θ))) may bee error of calculus 2)(x^2 −2cos(θ)x+1)=(x−cos(θ))^2 +sin^2 (θ) =sin^2 (θ)(((x/(sin(θ)))−cot(θ))^2 +1) ∫(dx/((x^2 −2cos(θ)x+1)))=∫(dx/(sin^2 (θ)(((x/(sin(θ)))−cot(θ))^2 +1))) ∀θ∈]0,2π[ ∣sin(θ)≠0 if sin(θ)=0⇒cos(θ)∈{−1,1} since f(−x)=x^2 −2xcos(θ)+1⇒cos(θ)=1 is ennough to find f(x), ⇒f(x)=(1/((x−1)^2 )) not integrable over IR_+ ⇒θ≠0 θ=π⇒f(x)=(1/((x+1)^2 )) ⇒∫_0 ^(+∞) (dx/((1+x)^2 ))=1 ∀θ∈[0,2π[−{0,π} f(x)=(1/(sin^2 (θ){((x/(sin(θ)))−cot(θ))^2 +1})) ∫_0 ^(+∞) f(x)dx=(1/(sin(θ)))[arctan((x/(sin(θ)))−cot(θ))]_0 ^(+∞) if θ∈]0,π[ f(x)=(1/(sin(θ))){(π/2)+arctan(cot(θ))} =(1/(sin(θ))){π−θ} if θ∈]π,2π[ f(x)=(1/(sin(θ))){−(π/2)+arctan(cot(θ))} =(1/(sin(θ))){−(π/2)+arctan(cot(π+(θ−π))} =(1/(sin(θ))){−(π/2)+arctan(cot(θ−π))}=(1/(sin(θ))){−(π/2)+arctan(tan(((3π)/2)−θ)) =(1/(sin(θ))){−(π/2)+((3π)/2)−θ}=(1/(sin(θ)))(π−θ) ⇒∫_0 ^(+∞) f(x)dx=((π−θ)/(sin(θ))),θ∈[0,2π]−{0,π} θ=π⇒f(x)=1 we can see that lim_(x→π) ((π−θ)/(sin(θ)))=−(1/(cos(π)))=1 3 ∀n≥2 =lim_(x→∞) f^(n−1) (x)−f^(n−1) (0)](https://www.tinkutara.com/question/Q81167.png)
Commented by mathmax by abdo last updated on 10/Feb/20

Commented by mind is power last updated on 10/Feb/20
